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Abstract 

Ancient genomic data is becoming increasingly available thanks to 
recent advances in high-throughput sequencing technologies. Yet, 
post-mortem degradation of endogenous ancient DNA often results 
in low depth of coverage and subsequently high levels of genotype 
missingness and uncertainty. Genotype imputation is a potential 
strategy for increasing the information available in ancient DNA 
samples and thus improving the power of downstream population 
genetic analyses. However, the performance of genotype imputation 
on ancient genomes under different conditions has not yet been fully 
explored, with all previous work primarily using an empirical 
approach of downsampling high coverage paleogenomes. While 
these studies have provided invaluable insights into best practices for 
imputation, they rely on a fairly limited number of existing high 
coverage samples with significant temporal and geographical biases. 
As an alternative, we used a coalescent simulation approach to 
generate genomes with characteristics of ancient DNA in order to 
more systematically evaluate the performance of two popular 
imputation software, BEAGLE and GLIMPSE, under variable 
divergence times between the target sample and reference 
haplotypes, as well as different depths of coverage and reference 
sample size. Our results suggest that for genomes with coverage 
<=0.1x imputation performance is poor regardless of the strategy 
employed. Beyond 0.1x coverage imputation is generally improved as 
the size of the reference panel increases, and imputation accuracy 

Received: 19 Sep 2023 
Accepted: 24 Dec 2023 
Published: 5 Jan 2024 

Copyright:  
©  2024 by the author(s).  
This is an Open Access article 
distributed under the  
Creative Commons License 
Attribution 4.0 International 
(CC BY 4.0) license, which 
permits unrestricted use, 
distribution and reproduction 
in any medium or format, 
provided the original work is 
correctly credited. 

Publisher’s Note:  
Pivot Science Publications 
remains neutral with regard 
to jurisdictional claims in 
published maps and 
institutional affiliations. 

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/


Human Population Genetics and Genomics 2024;4(1):0002  Page 2 of 23 

decreases with increasing divergence between target and reference 
populations. It may thus be preferable to compile a smaller set of less 
diverged reference samples than a larger more highly diverged 
dataset. In addition, the imputation accuracy may plateau beyond 
some level of divergence between the reference and target 
populations. While accuracy at common variants is similar regardless 
of divergence time, rarer variants are better imputed on less diverged 
target samples. Furthermore, both imputation software, but 
particularly GLIMPSE, overestimate high genotype probability calls, 
especially at low coverages. Our results provide insight into optimal 
strategies for ancient genotype imputation under a wide set of 
scenarios, complementing previous empirical studies based on 
imputing downsampled high-coverage ancient genomes. 

Keywords: Paleogenomics; ancient DNA; genomics; imputation; 
simulations; population genetics 

1. Introduction 

With the development of high-throughput sequencing technologies, 
the number of published ancient genomes has increased significantly 
over the past decade, reaching 10,000 earlier this year [1]. However, 
post-mortem damage, particularly in unfavorable environmental 
conditions, usually leads to a major decrease in the quantity and length 
of endogenous DNA molecules, in addition to often being mixed with 
contamination from other sources [2–5]. Such conditions typically lead 
to low library complexity, and thus, low sequence coverage (≤1x). Even 
with enrichment for specific SNPs [6,7], only a few samples reach a level 
of coverage to confidently call diploid sites. As a result, population 
genetic analyses must account for the high levels of genotype 
uncertainty and missingness exhibited in ancient samples. One 
potential strategy for increasing the information available in ancient 
samples is to perform genotype imputation. Imputation has 
traditionally been used to compensate for the variants that are not 
directly characterized in genotyping arrays [8]. The idea behind this 
approach is to use a panel of known reference haplotypes with a dense 
set of SNPs  in order to infer sites in a sample that has been genotyped 
only at a subset of these SNPs, providing a gain in power for 
downstream analysis [9]. Imputation has become common practice in 
the context of medical and population genetics involving modern 
genomes — particularly in genome-wide association studies (GWAS). 

However, the potential for circumventing the low endogenous content 
in ancient DNA (aDNA) using imputation has not yet been fully explored. 
Although missing data and low coverage still allow for analyses like 
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Principal Component Analysis (PCA) [10,11] or F-statistics [12] that can 
utilize “pseudo-haploid” calls, methods that require complete diploid 
genotypes or haplotypes such as analysis of runs of homozygosity 
(ROH) [13] and detection of segments that are identical-by-descent 
(IBD) [14] can only be confidently applied in ancient samples of 
exceptionally high coverage (recent attention has been paid to 
developing methods that try to perform similar analyses using lower 
coverage data, though even some of these rely on imputation in the 
underlying analytical framework [15,16]). In the case of applying 
imputation to ancient samples, two main issues arise from low 
coverage: large numbers of missing sites and substantial under-calling 
of true heterozygous genotypes. Therefore, it is preferable in such 
situations to use software such as BEAGLE v4 [17] and GLIMPSE [18] that 
perform imputation based on a probabilistic representation of the 
genotypes in the form of genotype likelihoods. 

A number of recent high-profile studies have attempted to impute 
aDNA with coverages as low as 0.1x for downstream analysis that 
require accurate diploid genomes, such as inference of RoH and IBD and 
chromosome ancestry painting [19–26]. To measure the confidence and 
accuracy of imputation on population genetic inferences, researchers 
have taken high coverage ancient genomes, downsampled them to 
lower coverage, and compared the imputed genotypes to high quality 
genotypes in the original samples [19,20,22,23,27]. Depending on the 
coverage tested, these studies have achieved as high as 99% overall 
genotype concordance, while lower minor allele frequency variants 
remain difficult to impute. Other research has explored imputation 
pipelines for low coverage data with various pre- and post-imputation 
filters, where genotype likelihoods are updated to genotype 
probabilities based on a reference panel, and resulting low-confidence 
genotypes (GP <  0.99) are filtered out prior to imputation [21,28]. While 
this approach may discard a large number of sites, it results in more 
high confidence calls and higher genotype (>99%) concordance 
between high-coverage and downsampled ancient samples. A recent 
comprehensive study by Sousa da Mota et al. [29] of more than 40 
ancient samples as old as 45,000 years from across the world combined 
downsampling of high coverage genomes down to 0.1x with trio 
sequencing to further examine biases that might result from imputation 
using GLIMPSE. Interestingly, they found significantly lower imputation 
accuracy for ancient African genomes, likely due to underrepresentation 
in the reference panel used for imputation. In addition, they noted how 
imputation accuracy of rarer variants is negatively impacted by the age 
of the sample and increasing divergence between the target sample 
and the reference panel. 

While these previous downsampling-based investigations have proved 
invaluable for understanding the effects of coverage on imputation on 
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ancient samples, they do not provide a truly unbiased examination of 
certain relevant variables. The effect and performance of imputation 
across various demographic scenarios is constrained by the limited 
availability of high coverage ancient genomes and the ascertainment 
bias in their geographical distribution and age. In addition, imputation 
of prehistoric ancient genomes, including those older than 10,000 years 
is performed by comparison to existing high coverage modern 
reference panels. However, the effect of the degree of divergence of the 
ancient sample from the reference panel on imputation accuracy has 
not yet been robustly quantified. Therefore, in this study we use a 
coalescent simulation approach to explore how the variation in genome 
coverage typical of ancient DNA affects imputation performance as a 
function of divergence from the reference population, with the goal of 
obtaining insight about convenient strategies to follow when imputing 
ancient samples, and to determine the appropriateness of imputation 
as a method for filling-in missing data in ancient samples. By evaluating 
imputation performance on simulated data rather than downsampled 
real data as in previous efforts, we can explore a wider range of 
scenarios in a more systematic manner. This approach could also  
be applied to populations whose ancient genomes are as yet 
underrepresented, or to non-human species.  

2. Methods 

2.1 Demographic model and generation of simulated aDNA 

Our general framework is to simulate genomic data using a three-
population model: 

- Pop1: the reference haplotype population; 
- Pop2: the target population that will be imputed (i.e., the “ancient 

population”) and is diverged d generations from Pop1; 
- Pop3: an outgroup population with fixed divergence from Pop1 

and Pop2 (Figure 1). 

We note that we do not explicitly model an “ancient” Pop2 population 
that is sampled sometime earlier than Pop1. Instead, we are interested 
in the effect of the degree of drift between Pop1 and Pop2 on 
imputation accuracy. Thus, in our model, if present day Pop1 and 
present day Pop2 diverged 50 generations ago, this would be the 
equivalent effect of the amount of drift that would occur between 
present day Pop1 and an ancient Pop2 sampled 50 x 2 = 100 generations 
ago under a scenario of complete population continuity. This greatly 
simplifies the parameter space that we are required to explore, as we 
do not need to consider to what extent ancient Pop2 might have 
diverged from the lineage from which Pop1 descended before being 
sampled (of which there are essentially unlimited possibilities). For 
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example, this amount of drift would also be equivalent to both an 
ancient population sampled 60 generations ago and that diverged from 
the ancestral population leading to Pop1 80 generations ago, or one 
sampled 40 generations ago and that diverged 70 years ago. 

In order to generate our baseline genomic data (i.e., the truth set), we 
used fastsimcoal26 [30] to simulate polymorphic haploid genomes 
roughly equivalent to human chr1 (~220 Mb) using a three-population 
coalescent model populations under various parameters (Figure 1, 
Table 1). Effective population size was set to 30,000 for each population. 
Per site per generation mutation rate was set to 2 x 10−9, and 
recombination rates were based on the HapMap GRCh37 genetic maps 
for chr1. Simulated haploid genomes were randomly paired within 
populations to make diploid individuals. Due to the computational 
burden when simulating high recombination rates in fastsimcoal26, 
regions with rates on the order of 1 x 10−7 or above were set to 1 x 10−7. 
Simulations were performed under five different divergence (d) times 
for Pop1 and Pop2: d = 50, 100, 500, 1500 and 2000 generations (the last 
being roughly equivalent to human non-African/African population 
divergence ~50 thousand years ago assuming 25 years per generation). 
Pop3 has a fixed divergence of 3,000 generations from the ancestor of 
Pop1 and Pop2. Our simulations generated ~100,000 biallelic variants 
above 5% frequency in the reference population, which is within the 
range expected for current human paleogenomic applications 
(~400,000 SNPs >5% frequency are found in European populations from 
the 1KGP based on whole genome shotgun sequencing [31] and 60,000 
when filtering down to the most commonly applied 1240K in-solution 
capture SNP set [6,7]). 

 

Figure 1 Population demographic model of simulated genomes. 
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Table 1 Simulation parameters. 

Divergence  
Pop1 - Pop2 

Divergence 
Pop3 

Sample Size Mutation 
Rate 

Recombination 
Rate 

(1) d = 50 generations 
(2) d = 100 generations 
(3) d = 500 generations 
(4) d = 1,500 generations 
(5) d = 2,000 generations 

3,000 
generations 

(1) P1 = 25; P2 = 25; P3 = 10 
(2) P1 = 100; P2 = 25; P3 = 50 
(3) P1 = 1,000; P2 = 25; P3 = 500 

2 x 10−9 Based on 
HapMap 
GRCh37 

recombination 
maps  

 
Furthermore, in order test the impact of a reference panel made up of 
haplotypes of varying divergence times, we simulated a scenario where 
the reference panel consisted of N = 1,000 individuals from Pop 1 that 
diverged, d = 2000 generations from Pop2, while also including five 
additional individuals that diverged d = 25 generations from Pop2. 

In addition, to explore a more complex demographic scenario, we 
simulated a population expansion in the target population characteristic 
of the demographic patterns of Mid-Holocene European farmer 
populations. Using parameters estimated from Veeramah et al. [32] we 
modeled a population that diverged from the reference population 250 
generations ago (~6 Ky) and expanded at a rate of 2% per generation. 
The target population (Pop2) was sampled 200 generations in the past, 
resulting in a total of 50 generations of divergence between the target 
sample and the reference panel (d = 50). 

Following simulation by fastsimcoal26, the data from our model were 
then partitioned and converted into three types of observable datasets: 
(a) true phased genomes from Pop1 and Pop3 for use as the reference 
panel for imputation and downstream population genetic analysis; (b) 
true phased genomes from Pop2; and (c) unphased, low coverage 
aDNA-like genomes from Pop2. Resulting Arlequin files were converted 
to VCF files with custom python scripts for all three populations. Low 
coverage datasets for Pop2 with 0.1x, 0.5x, 1x, and 5x mean coverage 
were generated from the original true genotypes by first drawing the 
total number of reads for each site from a random Poisson distribution 
with λ = 0.1, 0.5, 1, 5, respectively. The number of reads from each allele 
at true heterozygous sites was then drawn from a binomial distribution 
with p = 0.5. Finally, to account for sequencing errors, the cycle position 
of each read was drawn from a random uniform distribution on the 
interval 1–81 (81 being the total read length and noting that we do not 
explicitly model variable ancient fragment size) and Phred quality scores 
were simulated based on an 8th century Viking genome (Figure S1) [22]. 
We chose not to explicitly introduce aDNA damage, such as 
deaminations, as the several potential ways to introduce post-mortem 
DNA damage would have significantly increase the complexity of our 
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data generation, while most common uses cases in paleogenomics 
largely mitigate such effects through UDG treatment, terminal base 
clipping, and/or conditioning analyses to transversion sites [2]. SNP 
calling and genotype likelihood estimation were performed using 
custom scripts using the expressions described by DePristo et al. [33]. 
Non-biallelic sites (predominantly triallelic) were removed from any 
downstream analysis. We note that if a user were to utilize data with 
aDNA damage, a useful strategy would be to estimate genotype 
likelihood using methods that incorporate patterns of DNA damage, 
such as ATLAS [34]. 

2.2 Imputation strategies 

In order to assess how different imputation strategies affect genotype 
calling accuracy, we examined a number of different of analytical 
pipelines to impute the ancient-like Pop2. Our strategies differed mainly 
in the size of reference panels, and choice of imputation software. 

Traditionally, most imputation studies for ancient DNA have used large 
reference panels, such as the 1000 Genomes Project [31]. It has been 
suggested that rare variants are better imputed by increasing reference 
size with more diverse populations [35]. By using different reference 
panel sizes, we aim to shed light on how performance is affected by 
increasing reference size without necessarily introducing other 
populations. The reference population sizes used were N = 25, N = 100 
and N = 1,000. Additionally, to circumvent the issues that arise with low 
coverages at fixed genotype calls, we use genotype likelihoods as input 
to BEAGLE and GLIMPSE, two of the most popular methods for aDNA 
imputation. 

2.3 Imputation pipeline 

For every tested combination of imputation strategies, divergence 
times, and coverages, we used genotype likelihoods as input to BEAGLE 
and GLIMPSE. Phased Pop1 was always used as a reference panel. We 
imputed the equivalent of  chr1 using default imputation window size 
as defined in BEAGLE v4 [17] and GLIMPSE 1.1.0 [18]. For both software, 
burn-in iterations were set to 5 (default), and phasing and imputation 
iterations were set to 10 to increase imputation and phasing accuracy. 
All other parameters were set to default. Sites with a minor allele 
frequency (MAF) below 5% in the reference population were removed 
before imputation, as lower frequency variants are consistently shown 
to be poorly imputed due to their scarcity in reference panels, which 
tend to be highly enriched for higher frequency variants. Custom-made 
genetic maps based on HapMap GRCh37 recombination maps with 
capping at 1 x 10−7 as described above were used for GLIMPSE 
imputation, while BEAGLE v4 does not utilize genetic maps. We also 
briefly compared the results of GLIMPSE 1.1.0 to GLIMPSE v2 [36] with  

https://www.zotero.org/google-docs/?oGxcBr
https://www.zotero.org/google-docs/?anta3A
https://www.zotero.org/google-docs/?G0AGhv
https://www.zotero.org/google-docs/?COZY0j
https://www.zotero.org/google-docs/?QNGYvf
https://www.zotero.org/google-docs/?oNEDBj
https://www.zotero.org/google-docs/?zdX7nq
https://www.zotero.org/google-docs/?BWqGrM


Human Population Genetics and Genomics 2024;4(1):0002  Page 8 of 23 

N = 1000, as the latter is optimized for large reference panels with more 
than 2000 reference haplotypes. 

2.4 Performance evaluation 

For different combinations of reference and target datasets, we 
evaluated imputation accuracy by measuring the proportion of 
matching genotypes between the imputed and the true datasets for 
Pop2. We also measured accuracy within the context of MAF in the 
reference population and genotype probabilities (GP). Unless otherwise 
stated, results are shown for the most recent (d = 50) and the most 
divergent (d = 2000) reference panels made up of N = 1000 samples to 
evaluate the accuracy of imputation at our lower and upper bounds. We 
also examined the potential effect of imputation strategies on 
population genetic inference using principal component analysis (PCA) 
via smartpca [10,37], with Pop2 true and imputed genotypes projected 
onto PC space determined from Pop1 and Pop3 with the parameters 
lsqproject: YES and no outlier removal (outliermode: 2). Euclidean 
distance between true and downsampled target individuals was 
calculated using PC1 and PC2, and scaling the latter by the relative size 
of the eigenvectors (i.e., percentage of variation explained by each PC). 
We also explored the accuracy of phasing haplotype in the target Pop2 
individuals with the vcftools [38] function diff-switch-error, which 
assesses the switch error between the true genotypes and those phased 
by BEAGLE and GLIMPSE. 

3. Results 

3.1 Imputation accuracy by reference panel 

Figure 2a and Figure S2a summarize the overall proportion of correctly 
imputed genotypes (our measure of accuracy) in the target population, 
Pop2, across a range of mean depth of coverages, divergence times (d) 
from Pop1, and reference population sample sizes (N). In addition to 
overall concordance, we calculated accuracy separately for true 
heterozygous sites (Figure 2b, Figure S2b). For samples with a mean 
depth of coverage of 0.1x overall accuracy for all reference panel sizes 
and divergence times is within the range of 60%–67%. From 0.5x 
onwards, the divergence times have a greater effect on accuracy, with 
more recently diverged target samples being better imputed, as 
expected due to longer shared IBD stretches between the target and 
reference samples. This effect is amplified with increase in the reference 
panel size and coverage, such that the highest accuracies are observed 
for the smallest divergence (d = 50), largest reference size (N = 1,000) 
and highest coverage (5x). 

https://www.zotero.org/google-docs/?hUL51g
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Figure 2 (a) Overall proportion of correctly imputed genotypes; (b) proportion of correctly imputed 
heterozygous genotypes. 

As accuracy at homozygous sites is expected to be higher than at 
heterozygous sites (especially at lower coverages where often only one 
sequencing read might be sampled), we also conditioned accuracy at 
only true heterozygous sites. Heterozygous accuracy is substantially 
lower than overall accuracy for all combinations of variables, with only 
the single combination of d = 50, N = 1000 and 5x via GLIMPSE providing 
somewhat comparable results. At 0.1x, all target sample genotypes 
have an accuracy of ~40%, regardless of reference population size and 
divergence time. For 0.5x and above accuracy again predictably 
increases with coverage and reference panel and decreases with 
divergence.  

Both overall and heterozygous accuracies are similar for d = 1500 
compared to d = 2000, perhaps suggesting a saturation point. In 
addition, when considering all sites, at depths of coverage below 5x, 
BEAGLE slightly outperforms GLIMPSE, although both software perform 
similarly. However, at heterozygous sites GLIMPSE is consistently more 
accurate, especially with increasing coverage and smaller d. 

We also note that for all coverages ≥ 0.5x, overall accuracy and accuracy 
at true heterozygote sizes is consistently higher for small reference sizes 
and divergence times (N = 25, d = 50) than for a large reference size and 
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divergence time (N = 1,000, d = 2,000). Similarly, while increases in 
coverage consistently improve accuracy, the more diverged the 
reference and target, the slower the rate of increase in accuracy that 
accompanies increases in coverage (across the range of N tested 
accuracy generally increases by ~15% from 0.5x to 5x for d = 50, but less 
than 10% for d = 2000). Indeed, greater overall and heterozygous 
accuracy is consistently achieved when the coverage is 1x and d = 50 
compared to when coverage is 5x and d = 1500 or 2000. 

Additionally, we compared the performance of GLIMPSE v1 for N = 1,000 
to a more recent version of GLIMPSE (v2) optimized for larger reference 
panels. Both versions of GLIMPSE performed similarly and reached 
similar levels of accuracy overall and at heterozygous sites (Figure S3). 

Finally, we examined a scenario where the primary reference panel  
(N = 1000) for d = 2,000 was supplemented by five individuals d = 25 
generations divergent from the target individual. Despite the addition 
of these more closely related haplotypes, we observed similar overall 
and heterozygous imputation accuracy when using a reference  
N = 1,000 without the individuals of varying divergence (Figure S4). 

3.2 Imputation accuracy over the allele frequency spectrum 

To examine imputation performance as a function of the allele 
frequency spectrum, we measured accuracy of imputation genotypes in 
three bins (0.05-0.1, 0.1-0.3, 0.3-0.5) based on the minor allele frequency 
(MAF) in the reference population (Figure 3). We report imputation 
accuracy for the least and most divergent target samples (d = 50 and  
d = 2000, respectively) to evaluate performance at both upper and lower 
bounds. We observed that heterozygote imputation accuracy is heavily 
dependent on MAF, with the best imputed variants being unsurprisingly 
those in the highest bin (Figure 3b). This effect is particularly 
pronounced with lower coverage, regardless of imputation method or 
d. At 0.1x the heterozygote accuracy is ~50% larger for the highest MAF 
bin (0.3–0.5 ~65%) compared to the least frequent bin (0.05–0.1 < 14%). 
As coverage increases, rarer variants are generally better imputed. 
Variants are generally better imputed at d = 50 compared to d = 2000, 
although the difference in accuracy between both divergence times is 
again much more evident at rarer variants. While GLIMPSE v1 and 
GLIMPSE v2 tend to perform similarly overall for N = 1000 for most 
parameter combinations, when imputing with more divergent 
reference panels (d = 2000) GLIMPSE v2 did outperform GLIMPSE v1 for 
the higher frequency variants bin (MAF 10%–50%) at 5x (74% vs. 65%) 
(Figure S5).  



Human Population Genetics and Genomics 2024;4(1):0002  Page 11 of 23 

 

Figure 3 (a) Overall proportion of correctly imputed sites partitioned by MAF in a reference 
population of N = 1000 and d = 50 generations divergent; (b) proportion of correctly imputed 
heterozygous sites partitioned by MAF in a reference population of N = 1000 and d = 50 generations 
divergent. 

When evaluating overall accuracy (Figure 3a), we somewhat 
surprisingly see the opposite pattern: rare variants are imputed 
correctly more frequently than common variants. A likely explanation 
for this seemingly counter intuitive observation is that higher MAFs in 
the reference panel allow for heterozygous sites in the target sample to 
be better discriminated from homozygous sites. However, when 
reference MAFs are low, sites could be essentially randomly imputed as 
homozygous for the major allele and be correct often simply by chance. 
Such concordance will affect overall imputation accuracy, given that 
rare variants represent roughly 30% of markers in the reference panel 
in our simulations (Figure S6). 
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3.3 Genotype probabilities 

Once missing sites have been imputed, it is important to decide which 
sites will remain for downstream analyses. One possibility is to filter 
sites based on the average probability that a genotype call is correct via 
estimated genotype probabilities (GP) emitted by the imputation 
software and restrict analyses to variants with high certainty (e.g., 
>99%). We examined to what extent these emitted genotype 
probabilities reflected true error rates (e.g., are sites with a 99% 
genotype probability correctly imputed 99 times out of a 100?). To avoid 
the scenario of homozygous variants correctly imputed by chance 
observed above as a function of MAF, we restrict results to true 
heterozygous sites. Figure 4 summarizes the proportion of correctly 
imputed true heterozygous sites relative to the total number of sites 
imputed as heterozygous within genotype probability bins for d = 50 and 
d = 2000. While both methods seem to overestimate confidence in 
genotype calling at all population sizes and coverages, BEAGLE 
qualitatively tends to outperform GLIMPSE in assigning more 
representative probabilities for GPs greater than 60%. Although 
GLIMPSE correctly imputes slightly more heterozygous sites than 
BEAGLE (Figure 2), the probabilities associated with genotype calls are 
much less informative. We note that for d = 2000, the genotype 
probabilities emitted by GLIMPSE are particularly highly discordant (in 
the direction of being large overestimates) with genotype accuracy, 
regardless of coverage. While both versions of GLIMPSE were generally 
similarly discordant for N = 1000, a notable improvement was observed 
in assigning representative high (>95%) genotype probabilities when 
using GLIMPSE v2 with d = 2000 compared to GLIMPSE v1 (Figure S7). 

 

Figure 4 Proportion of correctly imputed heterozygous genotypes partitioned by genotype 
probability scores (a) d = 50, N = 1000; (b) d = 2000, N = 1000. 
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3.4 Genotype phasing 

Prior to imputation, haplotypes are resolved by assigning non-missing 
sites to a parental chromosome. As a result, imputation of missing 
variants will be affected by phasing accuracy. We evaluated phasing 
accuracy by measuring the proportion of ‘switches’ between the  
known maternal and paternal haplotypes from the true Pop2 dataset. In 
Figure 5, we show the proportion of correctly phased sites. Similar to 
imputation, accuracy is improved when using larger reference panels to 
phase higher coverage target samples, with a greater accuracy as 
divergence to the reference panel decreases, and phasing of our most 
divergent samples does not improve with reference population size, 
again suggesting a divergence threshold in which haplotype estimation 
does not improve. 

3.5 Principal component analysis 

In order explore how the kind of discordances between the true 
genotypes and the imputed genotypes might actually affect downstream 
analysis, we examined Pop2 imputed samples in a diploid PCA, projecting 
them on top of Pop1 and Pop3 populations that are 3000 generations 
diverged (Figure 1) and calculating the Euclidean distance between the 
true and imputed samples weighted by the relative percentage of 
variance explained by each principal component (Figure 6). Although 
we note that PCA can often be performed with pseudo-haploid calls, our 
analysis focuses on how reliable genotype imputation is for population 
genomic inference analyses. Figure 6 (outgroup Pop3 not shown for 
scaling) and Figure S8 show that higher coverage imputed genomes 
unsurprisingly map more closely to the actual true genotypes and 
demonstrate smaller variances. Similarly, imputed genomes generally 
map closer to the reference population as a function of decreasing 
coverage, with this difference becoming increasingly apparent with 
increasing d. Noticeably BEAGLE outperforms GLIMPSE for d ≥ 500 in 
terms of mapping closer to the true population and further from the 
reference population given the same coverage, but for d ≤ 100 shows 
the curious pattern of lower coverage samples mapping away from both 
the reference and true target population and moving towards the 
outgroup populations, and is thus outperformed by GLIMPSE. 
Interestingly, imputed samples do not seem to cluster more closely to 
the true samples when applying post-imputation genotype probabilities 
filters (GP > 0.99) (Figure S8A) and are systematically at greater 
Euclidean distances from the true sample than the non-GP filtered 
samples (Figure S8B). In addition, lower-coverage samples show a 
more widespread distribution across the PCA when imposing this filter. 
These observations suggest that genotype probability filtering discards 
a large number of sites, introducing more noise and without yielding 
substantial improvements for diploid-based inference. 
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Figure 5 Proportion of correctly phased genotypes based on switch-
error. (a) Reference N = 25. (b) Reference N = 100. (c) Reference N = 1000. 



Human Population Genetics and Genomics 2024;4(1):0002  Page 15 of 23 

 

Figure 6 Principal component analysis of imputed and true target samples (outgroup Pop3 not 
shown). (a) PCA projection; (b) Euclidean distance between true and imputed samples. 
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3.6 Imputation performance under a scenario of recent population 
expansion 

While we cannot explore all possible demographic scenarios within the 
scope of this study, it is generally thought that Eurasian populations 
grew significantly within the Holocene era. Therefore, to gain some 
insight into how our results were affected by imposing constant 
population sizes, we also simulated a scenario in which the target 
haplotypes originated from a population that underwent population 
expansion, characteristic of the demographic patterns of Mid-Holocene 
European farmer populations. We modeled a population that diverged 
from the reference population 250 generations ago (~6 Ky) and 
expanded at a rate of 2% per generation [32]. The target population 
(Pop2) was then sampled 200 generations in the past, resulting in a total 
of 50 generations of divergence between the target sample and the 
reference panel (d = 50). Compared to the scenario of d = 50 with no 
population expansion, we observe a decrease of between 5% to 10% 
with regard to both overall accuracy of imputation and at true 
heterozygous sites (Figure S9). When examining this affect across the 
allele frequency spectrum it is notable that there is a much larger drop 
off in accuracy for variants in the lower MAF bin under a population 
expansion (0.05–1, with a difference in error rate of 22% and 24% for 
GLIMPSE and BEAGLE respectively for 5x) compared to the highest bin 
(MAF 0.3-0.5, 11% and 2% decrease for GLIMPSE and BEAGLE 
respectively) (Figure S10). While filtering for SNPs with a MAF > 5% in 
the reference population might be expected to mitigate most of the 
potential error introduced by an increase in newer low frequency 
variants in the expanding target population, there clearly are still 
residual effects on the haplotype patterns of more established lower 
frequency variants, likely due to distortion of patterns of linkage 
disequilibrium. 

4. Discussion 

In this study, we systematically evaluated the performance of 
imputation of aDNA in different simulated scenarios of population 
divergence. We measured imputation accuracy in the context of 
reference MAF, low depths of coverage, reference panel size and 
imputation software. Unsurprisingly, imputation accuracy is maximized 
when based on the largest reference panel (N = 1000), the lowest 
divergence between target and reference population (d = 50) and the 
highest coverage we attempted (5x). In line with previous 
downsampling-based studies, accuracy is consistently worse at 
heterozygous sites and for sites with low minor allele frequencies in the 
reference populations. However, we note that we never achieve 
concordance of 99% observed in these same downsampling-based 

https://www.zotero.org/google-docs/?XnvSKO
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studies (the highest we observe is 96%). This may reflect limitations of 
our simulated reference panel, which is fairly simplistic compared to the 
more diverse panels utilized in real-world studies. It is also possible that 
a larger reference panel such as the Haplotype Reference Consortium 
(HRC), which combines data from ~32,000 individuals with European 
ancestry [39] could further improve imputation, especially when 
combined with new software such as GLIMPSE v2, which is optimized 
large reference sets such as these. However, it is also possible that the 
reliance on the assumption in empirical studies that all high-coverage 
genotype calls are correct may not be completely valid due to the 
complexity of sequencing errors that occur in next generation 
sequencing, thus overestimating their accuracy. We would suggest that 
while our observed accuracy values are not necessarily directly 
comparable to real-world applications in empirical studies, the general 
trends in terms of coverage, divergence and software are robust and 
can be used to guide decision making during imputation. 

4.1 Effects of reference and target divergence 

As would be expected, target samples that were more recently diverged 
from the reference population were better imputed overall. The 
greatest impact of increasing divergence on accuracy appears to be at 
heterozygous sites at low MAF in the reference population. This is in line 
with the work by Sousa da Mota et al. [29], where imputation of low-
frequency variants was negatively impacted by the age and divergence 
between the African target samples and the reference panel. 
Interestingly, imputation accuracies for the most diverged target 
samples (i.e., oldest) we simulated (d = 1500 and d = 2000) were usually 
within the same range and behaved similarly across every imputation 
strategy and coverage, suggesting a possible divergence threshold in 
which imputation performance will not significantly improve with 
sequencing read depth. We also found that when divergence between 
the reference haplotypes and target genome was high (d ≥ 1500), this 
could significantly affect accuracy even when other conditions such as 
reference population size and coverage were optimum. For example, 
our results suggest that when assembling reference haplotypes sets, 
smaller numbers of samples that are more closely related to the target 
population to be imputed may be a more favorable strategy compared 
to compiling large numbers of very highly diverged samples. This was 
also the case even when integrating a few less divergent reference 
haplotypes into larger and more divergent reference panels. In 
addition, imputation may perform poorly even in samples with good (in 
the context of most existing ancient genomes) coverage if the reference 
sample is distantly diverged from the target (for example imputing an 
ancient Africa genome at ~5x using non-African reference haplotypes). 

https://www.zotero.org/google-docs/?Exe7g1
https://www.zotero.org/google-docs/?vBA4Ct
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Generally, our results suggest that for humans, imputation with modern 
populations will likely produce usable results for historical-era and 
young prehistoric populations (for example those that straddle the 
Neolithic and Paleolithic era), but caution should be applied to the 
imputation of ancient genomes from the deep prehistoric era (~50,000 
years ago), or that are deeply diverged from the reference populations, 
such as using non-African populations to impute African paleogenomes. 

Even the addition of a small number of high coverage ancient genomes 
to the reference set may significantly improve imputation performance, 
particularly for inference of heterozygous genotypes with low MAF, as 
suggested by Ausmees et al. [27]. 

4.2 The impact of low coverage 

While accuracy was benefited by increasing the size of reference panels, 
improvements in accuracy were less pronounced as coverage 
simultaneously decreased. Most strikingly, imputation performance for 
the lowest coverage samples did not considerably change with any of 
the imputation strategies we used. Samples with 0.1x coverage were 
consistently imputed with ~40% accuracy at heterozygous sites, or ~60% 
total accuracy, regardless of the imputation strategy or divergence 
between the reference and target datasets. This can be an important 
consideration, given that several ancient samples present low coverage 
(<1x). While our results suggest that imputation of missing data in very 
low coverage samples may not reach enough accuracy to perform 
population genetic analyses that require high SNP density, imposing 
post-imputation GP filtering has been suggested to be a viable option 
to discard a large number of incorrect calls. While our observations 
suggest this might be a viable option when imputing with BEAGLE, 
GLIMPSE filtering may require an alternative approach, since we found 
it greatly overestimates high GP calls, especially at lower coverages and 
high divergence. A possible way to circumvent this issue is that 
proposed by Hui et al. [28], where a pre-imputation GP filter is imposed, 
at the expense of discarding a large number of SNPs. 

4.3 Beagle vs. Glimpse 

Although both software perform similarly, BEAGLE’s overall accuracy is 
generally slightly higher than GLIMPSE. Accuracy at heterozygous sites 
may be a more interesting metric to evaluate imputation performance, 
given that they are less prone to random agreement and will affect 
overall imputation accuracy. GLIMPSE v1 and GLIMPSE v2 generally 
outperform BEAGLE at heterozygous sites, especially for more recent 
samples with higher coverages. When imputing lower frequency 
variants, GLIMPSE tends to outperform BEAGLE across every simulated 
coverage. The choice of which method to use may depend on the 
interest of the user. For example, one might prefer GLIMPSE if the 

https://www.zotero.org/google-docs/?CDfKsi
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reference and target datasets are not very distantly diverged. If filtering 
by GPs is of interest, one should consider that GLIMPSE v1 will likely 
keep a large number of sites with non-representative GPs. Even 
computational resources may be of consideration, as GLIMPSE 
constantly outperformed BEAGLE in terms of running time by several 
orders of magnitude, especially with larger reference panels [18]. 

4.4 Downstream analysis of imputed ancient genomes 

When analyzing our imputed diploid genotypes using PCA, higher 
coverage samples showed closer mapping to true samples, while lower 
coverage samples clustered with the reference panel. The disparity 
between true and imputed samples increased with greater divergence 
times, especially with GLIMPSE imputation at lower coverages. Even at 
5x, imputation may not be a particularly suitable method for generating 
accurate genome-wide diploid genotypes for downstream population 
genetic analysis if the target and reference population are too far 
diverged, and may introduce cryptic biases. Interestingly, applying 
genotype probability filters did not improve clustering to true samples 
significantly, while the clustering of lower-coverage samples was more 
noisy. These results suggest that the common practice of genotype 
probability filtering may not always yield substantial improvements for 
downstream diploid inference, and instead introduce greater noise. 

In addition, PCA presents somewhat of a baseline for population genetic 
inferential methods, in that it does not rely on signals that correlate 
amongst sites (i.e., haplotypes). More sophisticated haplotype-based 
analysis such as IBD inference and chromosome painting will likely 
result in even larger biases, as our results suggest divergence between 
the reference and target population has a significant impact on 
haplotype switch-error, with both increases in coverage and reference 
size having very little effect once d is ≥ 1500. 

5. Conclusions 

By using simulated genomic data, we were able to explore imputation 
performance for ancient DNA across a wide range of demographic 
space with respect to divergence time between the target and reference 
populations with high confidence in the underlying “truth set”, and 
make observations that might have practical relevance to those 
designing imputation experiments for their own data. Yet, it should be 
noted that we only evaluated performance under a very limited number 
of strategies and simplistic demographic scenarios. Expanding this 
simulation approach to more complex demographic scenarios that 
reflect more realistic processes we know are common in human 
populations such as admixture and isolation-by-distance is likely to be 
necessary to more fully investigate imputation performance and 

https://www.zotero.org/google-docs/?Q78CcP
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provide information that can be used to customize imputation pipelines 
for populations of varying demographic backgrounds. For example, 
when simulating a significant recent population expansion reflecting 
the expansion of early European farmers, we found a notable reduction 
in accuracy at lower frequency variants compared to our more simplistic 
scenario of constant effective population sizes. While simulation 
approaches are unlikely to ever capture the real-world sequence 
features of paleogenomes that downsampling studies of imputation 
performance can such as DNA damage, they may prove to be a useful 
complement, particularly for those working on human paleogenomes 
from underrepresented regions as well as non-human species. 
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