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Abstract
In this the first of an anticipated four paper series, fundamental results of
quantitative genetics are presented from a first principles approach. While
none of these results are in any sense new, they are presented in extended
detail to precisely distinguish between definition and assumption, with a
further emphasis on distinguishing quantities from their usual
approximations. Terminology frequently encountered in the field of human
genetic disease studies will be defined in terms of their quantitive genetics
form. Methods for estimation of both quantitative genetics and the related
human genetics quantities will be demonstrated. The principal target
audience for this work is trainees reasonably familiar with population
genetics theory, but with less experience in its application to human disease
studies. We introduce much of this formalism because in later papers in this
series, we demonstrate that common areas of confusion in human disease
studies can be resolved be appealing directly to these formal definitions. The
second paper in this series will discuss polygenic risk scores. The third paper
will concern the question of “missing” heritability and the role interactions
may play. The fourth paper will discuss sexually dimorphic disease and the
potential role of the X chromosome.

Background: With over a hundred years of history, most fundamental
results in quantitative genetics are well known to most population genetics
students, yet there is often considerable confusion concerning precise
definitions and assumptions, particularly when interactions may exist. The
connections between quantitative genetics and human disease genetics can
be obscure to many.
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Methods: Fundamental quantitative genetics quantities are derived as
conditional expectations of phenotype. Genetic, environmental, additive,
dominance and interaction effects and their associated variances are defined,
with key results explicitly derived. The effects of linkage disequilibrium and
methods to account for it are examined. Methods to estimate and interpret
heritability are discussed.
Results: Application of quantitative genetics quantities are extended to
binary traits with special emphasis on translation between commonly
estimated human disease genetics quantities and their corresponding
quantitative genetics representations.
Conclusions: The distinction between modeling definitions and assumptions
is made clear. Methods to unite human disease genetics and quantitative
genetics are elucidated. Methods to account for linkage disequilibrium and
other forms of interaction are described.

Keywords: quantitative genetics; human disease; linkage disequilibrium;
liability model; genetic interaction

1. Introduction

Arguably the most important paper in the history of population genetics theory
was Fisher 1918, “The Correlation between Relatives on the Supposition of
Mendelian Inheritance.” [1]. In this work, nearly impenetrable to read by modern
standards, Fisher established the fundamental model of quantitative genetics,
unified the seemingly incompatible genetical models of Mendel and Galton,
derived heritability from first principles, showed how to predict the correlation
between relatives as a function of heritability, and began the process of defining
and formalizing analysis of variance [2]. All told, not a bad accomplishment for a
work begun as an undergraduate that may have been in revision or “review” for
the better part of 8 years [3].

Buried at the heart of Fisher’s model is the idea of the effect of an allele on the
phenotype of an individual. In Fisher’s presentation, and subsequent presentations
by Falconer [4] and many others [5, 6], the effect of an allele on phenotype is
imagined as a physically determined entity - an allele with an effect two millimeters
on height transmits two millimeters of height to an offspring when inherited from
a parent. The effect of the allele is in some sense immutable, independent of its
context or how it is observed. We can think of this interpretation of an allele as
analogous to the classical mechanical interpretation of the atom. An electron has
energy, spin or position that is determined at all times. In Kempthorne’s 1955 [7]
derivation of fundamental quantitative genetics results, he introduces a subtly
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different interpretation of the effect of an allele. Analogous to the Copenhagen
interpretation of the atom where an electron’s state is only determined when acted
upon by external forces such as observation, in the Kempthorne presentation,
the effect of an allele is fundamentally interactive and probabilisitic. It is only
determined once it is in the presence of other genetic and environmental effects
in the individual who harbors that allele, and as a result the contribution it makes
to phenotype only takes an observable form in the context of these other factors.
In different contexts an allele has different effects. Because an allele makes no
single determined contribution to phenotype, its effect is defined as the average
contribution it makes over all the contexts in which it occurs. To be precise, a
genetic effect is defined as the average phenotype of an individual with a given
genotype, i.e., an effect is defined as a conditional expectation of phenotype.
In any particular person, their height is determined by the allele in question
together with all the other genes and environments affecting height, and it is
possible that no two individuals are affected exactly the same way by the same
allele, because everyone may have some differing combination of genetic and
environmental factors. The effect of the allele in question is defined as the average
height of individuals with that allele. Thus, an effect is defined to be a conditional
expectation, a scalar – as are effects in the Fisher/Falconer interpretation – but
here the scalar is determined by the average phenotype of people with that
allele, rather than as a fixed, immutable quantity. In individuals with a different
collection of other genetic and environmental factors, the effect of this allele
could be different. In the “infinitesimal” limit imagined by Fisher/Falconer, where
individual effects are so small as to be nearly unmeasurable, there is likely no
practical difference between the Fisher/Falconer and Kempthorne interpretations
of a genetic effect. In the context of 21st century human genetics, where the goal
of an experiment is often to accurately measure the genetic effect of an allele, the
distinction between the these two interpretations will be seen to lie at the crux of
many of the most apparently confounding observations. Paper two in this series
will make abundantly clear why focus on this subtle distinction can have profound
effects on our understanding of human genetics.

For all that follows in these series of papers, we will follow the Kempthorne
interpretation of genetic effects. We do so for several reasons. First, in the
opinion of these authors, Kempthorne’s approach is, in some sense, more
biologically realistic. Almost everything in biology seems interconnected with
other elements. It seems more plausible that an allele only affects phenotype in
the context of all other genetic/environmental factors than an allele has a
predetermined, knowable effect on phenotype that will be exactly the same in
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two or more different contexts. Second, we favor the Kempthorne interpretation
for its modeling elegance and ease of presentation. This framework allows use to
clearly delineate model assumptions, and it will become obvious that very few
assumptions are necessary for virtually all quantitative genetics to be well-defined
and interpretable. It is in this framework that higher order interactions become
most easy to understand. Finally, and of most practical utility, we will see over the
course of all four papers that the Kempthorne interpretation will help us to better
understand numerous perplexing observations in human genetics, while giving
us analytical tools to confront those challenges.

2. Materials and Methods

The presentation below largely follows Kempthorne, 1955, in a somewhat
more modern notation, with much greater detail to assist the student in
understanding results. While the formalism is strictly Kempthorne’s, in only a
very few places does the distinction between the Kempthorne and
Fisher/Falconer interpretation lead to any material difference in how a result
is viewed or understood. In those cases we will endeavor to point out what
implications the differing interpretations have. Throughout this section we
will refer to the Fisher/Falconer interpretation of genetic effect as the Falconer
interpretation as his detailed derivations, presentations, and formalism are far
more commonly read by population geneticists than Fisher’s. In our first
simplification from Kempthorne, we restrict our presentation to only two
alleles at each locus because in a modern context we think of these loci as
single nucleotide changes, single nucleotide polymorphisms (SNP) in the
usual term of human genetics, rather than a more abstract concept like gene
or locus that Kempthorne envisioned nearly 70 years ago.

2.1 Single locus

To begin, consider a single diploid locus in Hardy-Weinberg equilibrium with
two alleles A0 and A1, where the frequency of A0 is p, and the frequency of
A1 is q = 1 − p. For the sake of notational convenience let us suppose that
we have oriented the allelic labels such that p ≥ q. Thus, in the parlance of
human genetics, A0 is the “major” allele, and A1 is the “minor” allele. Imagine
individuals have some observable, measurable quantitative phenotype Y such
as height, weight, or blood pressure. Further suppose that individuals with
genotype A0A0 have average phenotype y00, individuals with genotype A0A1
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have average phenotype y01, and individuals with genotype A1A1 have average
phenotype y11. Thus,

E[Y|G = A0A0] = y00.

E[Y|G = A0A1] = y01.

E[Y|G = A1A1] = y11.

µy = E[Y] = Pr[G = A0A0]E[Y|G = A0A0]

+Pr[G = A0A1]E[Y|G = A0A1]

+Pr[G = A1A1]E[Y|G = A1A1]

= p2y00 + 2pqy01 + q2y11.

The overall population mean is thus found by appeal to the law of total
expectation: the expectation of random variable X is the
∑ Pr[X = x]E[X|X = x], where the sum is taken over all possible states x of the
random variable X. For computational tractability, instead of working with
phenotype Y, we will instead consider the linear transformation of Y, P, where
P = Y − µy. Thus, P is a zero centered translation of Y. We have made this
transformation so that P has mean 0, E[P] = E[Y − µy] = E[Y]− µy = 0, but
otherwise the shape of P’s distribution is the same as Y’s. We call P the
phenotype of an individual. That P has mean 0 will be used repeatedly in all
that follows.

Define the “genetic effects” γ00, γ01, γ11 of genotypes A0A0, A0A1, A1A1 to be
the average phenotype of individuals with those genotypes, i.e., the conditional
expectation of phenotype given the genotype. If we let G be the two allele
genotype at this locus

γ00 = E[P|G = A0A0].

γ01 = E[P|G = A0A1].

γ11 = E[P|G = A1A1].

E[P] = Pr[G = A0A0]E[P|G = A0A0] + Pr[G = A0A1]E[P|G = A0A1]

+Pr[G = A1A1]E[P|G = A1A1]

= p2γ00 + 2pqγ01 + q2γ11 = 0.

Thus, the genetic effect of genotype G = Ai Aj, i, j ∈ {0, 1}, is given by γij,
which is the conditional expectation of phenotype, given the individual has
genotype Ai Aj. Notice that if two populations have differing genotype
frequencies at this locus, the genetic effects are necessarily different, since
both populations will have been normalized to have mean zero phenotype.
Here we see the first element of the difference between the Falconer and
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Kempthorne interpretations. A Falconer view point might imagine the genetic
effects as fixed and independent of allele frequencies. In Kempthorne’s
approach genetic effects are only defined conditional on the genotype
frequencies.

In a similar fashion, call the “allelic effect” the conditional expectation of
phenotype, given an individual possesses the allele. Let α0 and α1 be the allelic
effects of A0 and A1. To find α0 imagine picking an individual at random from
the population. Next imagine picking an allele at random from the chosen
person. The probability that the chosen allele was A0 is, by definition, p.
Similarly, the probability the picked allele was A1 is q. We find the allelic effect
α as the conditional expectation of phenotype given the picked allele. Let A be
a randomly picked allele

α0 = E[P|A = A0]

= Pr[G = A0A0|A = A0]E[P|G = A0A0]

+Pr[G = A0A1|A = A0]E[P|G = A0A1]

+Pr[G = A1A1|A = A0]E[P|G = A1A1]

=
p2

p
γ00 +

1
2

2pq
p

γ01 + 0

= pγ00 + qγ01.

α1 = E[P|A = A1]

= pγ01 + qγ11.

Importantly, note that from these definitions

pα0 + qα1 = p(pγ00 + qγ01) + q(pγ01 + qγ11)

= p2γ00 + 2pqγ01 + q2γ11 = 0.

α0 =
−qα1

p
.

α1 =
−pα0

q
,

further reenforcing the notion that in the Kempthorne framework the allelic
effects are defined in terms of the allele frequencies. At first this might sound
counter-intuitive, but there is a natural way to understand this. In the
Kempthorne framework, the effect of an allele is determined by the average
phenotype of individuals with that allele where the average is taken over all
the other genetic and environmental contexts the allele occurs. If
heterozygotes and homozygotes have different average phenotypes, then the
frequency with which an allele is in those two different contexts is a function
of the allele frequency, and the effect of an allele is dependent on its
frequency. We define a related variable β = α1 − α0 as the difference in the



Human Population Genetics and Genomics, 2023; 3(4), 0007 Page 7 of 49

allelic effects between the two alleles. This variable β is naturally interpreted
as the consequence of substituting an A1 allele for an A0 allele, and will be
commonly estimated in a linear regression or related framework. We will
discuss in much greater detail in paper two how β could be, and very likely
often is, independent of allele frequency.

While formally we define α as an allelic effect (mean phenotype of an
individual with that allele), we will often refer to α’s as the “additive effect” of
an allele, and may frequently use the terms “allelic effect” and “additive effect”
interchangeably. At first blush this interchange of terms may seem very odd.
Traditionally in one locus population genetics the term “additive” is used to
describe a dominance relationship. A locus is called additive when the
phenotype of the heterozygote is the average of the two homozygous
phenotypes. In this context, a locus is additive if γ01 = γ00+γ11

2 . It turns out that
there is a very natural reason to equate the terms “allelic effects” and “additive
effects.” Note that if the locus is additive then

0 = p2γ00 + 2pqγ01 + q2γ11

= p2γ00 + 2pq(γ00 + γ11)/2 + q2γ11

= γ00(p2 + pq) + γ11(pq + q2)

= γ00 p(p + q) + γ11q(p + q)

= pγ00 + qγ11

2α0 = 2pγ00 + 2qγ01

= 2pγ00 + 2q(γ00 + γ11)/2

= pγ00 + qγ00 + pγ00 + qγ11

= γ00(p + q) + 0

= γ00

α0 + α1 = pγ00 + qγ01 + pγ01 + qγ11

= pγ00 + γ01(p + q) + qγ11

= (pγ00 + qγ11) + γ01

= γ01

2α1 = 2pγ01 + 2qγ11

= 2p(γ00 + γ11)/2 + 2qγ11

= pγ00 + pγ11 + qγ11 + qγ11

= (pγ00 + qγ11) + γ11(p + q)

= 0 + γ11 = γ11.
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Thus, we find for an additive locus the total genetic effects are simply the sum
of the individual allele effects added together. For such an additive locus

γ00 = 2α0.

γ01 = α0 + α1.

γ11 = 2α1.

In a Falconer inspired presentation of this work, one might have been asked
to assume that the total genetic effect at a locus was the sum of the individual
“additive” effects of the alleles. This could be an assumption of the model. In a
Kempthorne framework, where the definition of allelic effects are the mean
phenotype of individuals with that allele, for any locus in Hardy-Weinberg that
is additive, additivity implies that the genotype effect is the sum of the allelic
effects. For an additive locus, the genotype effect is simply the sum of its
individual allelic effects. For a non-additive locus, the genotypic effects will
differ from the sum of the allelic effects. Let δ be the difference between the
genetic effects of a genotype from the sum of its individual allelic effects. In
particular, let

δ00 = γ00 − 2α0.

γ00 = 2α0 + δ00.

δ01 = γ01 − (α0 + α1).

γ01 = α0 + α1 + δ01.

δ11 = γ11 − 2α1.

γ11 = 2α1 + δ11.

We will frequently call δij the “dominance deviation” of genotype Ai Aj. Now,
imagine a random variable, g, representing the genetic effect of this locus,
where its value is determined by the genotype of an individual. Thus if an
individual has genotype G = Ai Aj, then g = γij. Genotype is viewed as a
randomizing process, and when G = Ai Aj a random variable g has value γij.
This random variable g can be further decomposed into a random variable a,
whose value is the sum of the allelic effects a = αi + αj, and another random
variable d = δij, the deviation (difference) from additivity due to dominance. In
all cases we think of these random variables, g,a,d, as being determined by the
random process of genotype in the individual. Thus, in a notational convention
we will attempt to maintain throughout, G refers to a randomly determined
genotype with effect, average phenotype conditional on the genotype, γ. A
refers to a random allele, with effect, average phenotype conditional on the
allele, α. The lower case g, a and d are random variables determined by the
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random genotype giving rise to this locus’s genetic, additive, and dominance
effects. The fact that P has mean 0 implies the average of these random
variables must also be 0.

E[g] = E[E[P|G]] = E[P] = 0

E[a] = E[E[a|G = Ai Aj]] = E[αi + αj] = E[αi] + E[αj]

= Pr[Ai = A0]E[P|Ai = A0] + Pr[Ai = A1]E[P|Ai = A1]

+Pr[Aj = A0]E[P|Aj = A0] + Pr[Aj = A1]E[P|Aj = A1]

= pα0 + qα1 + pα0 + qα1 = 0

E[d] = E[g − a] = E[g]− E[a] = 0

While the average genetic, additive and dominance effects are all zero, they
each might contribute to total phenotypic variance. In particular the genetic
variance due to this locus, Vg is

Vg = Var[g] = E[g2]− (E[g])2 = E[g2]

= Pr[G = A0A0]E[P|G = A0A0]
2 + Pr[G = A0A1]E[P|G = A0A1]

2

+Pr[G = A1A1]E[P|G = A1A1]
2

= p2(γ00)
2 + 2pq(γ01)

2 + q2(γ11)
2.

The additive variance, Va, due to this locus is

Va = Var[a] = E[a2]− (E[a])2 = E[a2]

= Pr[G = A0A0](2α0)
2 + Pr[G = A0A1](α0 + α1)

2 + Pr[G = A1A1](2α1)
2

= p2(4α2
0) + 2pq(α2

0 + 2α0α1 + α2
1) + q2(4α2

1)

= 2pα0(2pα0 + qα0 + qα1) + 2qα1(2qα1 + pα1 + pα0)

= 2pα0(α0(p + q) + pα0 + qα1) + 2qα1(α1(p + q) + pα0 + qα1)

= 2(pα2
0 + qα2

1)

Notice the 2 in front of the sum. Intuitively the quantity inside the parenthesis
is the additive variance due to a single allele, and the 2 comes from the fact
that this is a diploid organism with additive contributions from both alleles.
The dominance variance, Vd from this locus is

Vd = Var[d] = E[d2]− (E[d])2 = E[d2]

= p2(δ00)
2 + 2pq(δ01)

2 + q2(δ11)
2.

In a result that might be considered something less than completely obvious,
Var[g] = Var[a] + Var[d]. This follows from Hardy-Weinberg equilibrium and
the definition g = a + d. To see this note, Var[g] = Var[a + d] = Var[a] + Var[d] +
2Cov[a, d], but
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Cov[a, d] = E[ad]− E[a]E[d] = E[ad]

= p2(2α0δ00) + 2pq((α0 + α1)δ01) + q2(2α1δ11)

= p2(2α0(γ00 − 2α0) + 2pq((α0 + α1)(γ01 − (α0 + α1)))

+q2(2α1(γ11 − 2α1))

= p2(2α0γ00) + 2pq((α0 + α1)γ01) + q2(2α1γ11)

−
[
p2(2α0)

2 + 2pq(α0 + α1)
2 + q2(2α1)

2]
= 2pα0(pγ00 + qγ01) + 2qα1(pγ01 + qγ11)− Va

= 2pα2
0 + 2qα2

1 − Va = 0.

Notice that we used Hardy-Weinberg throughout this. Thus, the additive and
dominance contributions to variance are fundamentally orthogonal within
a locus in Hardy-Weinberg equilibrium. The total genetic variance is simply
the sum the additive and dominance variance contributions. Put another
way, if a locus is in Hardy-Weinberg Equilibrium then there is no interaction
between additivity and dominance, or perhaps even more intuitively, within a
single locus in Hardy-Weinberg, the only possible deviation from additivity is
an uncorrelated dominance effect. On the other hand, inbreeding and other
departures from Hardy-Weinberg create correlation between the allelic states
and could create correlation between the additive and dominance components
within a locus.

2.2 Many loci and environments

Moving to multiple loci we expand our notation as follows. Let Gv be the
genotype at locus v. Again assuming two alleles Av0 and Av1 at every genetic
locus, v, γv00 , γv01 , and γv11 corresponds to the genotypic effects (conditional
expectation of phenotype given the genotype) of the three genotypes at this
locus. Let the allelic effects (conditional expectation of phenotype given the
allele) at this locus be αv0 and αv1 . Let gv, av and dv be the random variables
induced by the genotype at locus v with values determined by the
corresponding values of γ, α and δ, reflecting the genetic, additive and
dominance contributions of this locus. Call the corresponding variance terms
Vgv , for the total genetic variance, Vav for the additive variance, and Vdv for the
dominance variance. See Table 1 for a summary of several key variables
introduced in this section.
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Table 1 Summary of key variables.

Symbol Description Formalism

Av0 The major allele at locus v Freq[Av0 ] ≥ Freq[Av1 ]

Av1 The minor allele at locus v Freq[Av1 ] ≤ Freq[Av0 ]

pv Frequency of Av0 pv = Freq[Av0 ]

qv Frequency of Av1 qv = 1 − pv

Av Random allele at locus v,
Av ∈ {Av0 , Av1} Pr[Av = Av0 ] = pv , Pr[Av = Av1 ] = qv

Gv Random genotype at locus v, Pr[Gv = Av0 Av0 ] = p2
v , Pr[Gv = Av0 Av1 ] = 2pvqv

Gv ∈ {Av0 Av0 , Av0 Av1 , Av1 Av1} Pr[Gv = Av1 Av1] = q2
v

γv00 Genotypic effect of Av0 Av0 γv00 = E[P|Gv = Av0 Av0 ]

γv01 Genotypic effect of Av0 Av1 γv01 = E[P|Gv = Av0 Av1 ]

γv11 Genotypic effect of Av1 Av1 γv11 = E[P|Gv = Av1 Av1 ]

αv0 Allelic effect of Av0 αv0 = E[P|Av = Av0 ]

αv1 Allelic effect of Av1 αv1 = E[P|Av = Av1 ] =
−pvαv0

qv

βv Difference in allelic effects βv = αv1 − αv0

δv00 Dominance deviation of genotype Av0 Av0 δv00 = γv00 − 2α0

δv01 Dominance deviation of genotype Av0 Av1 δv01 = γv01 − (α0 + α1)

δv11 Dominance deviation of genotype Av1 Av1 δv11 = γv11 − 2α1

gv Random genetic effect determined by Gv If Gv = Avi Avj , then gv = γvij

av Random additive effect determined by Gv If Gv = Avi Avj , then av = αvi + αvj

dv Random dominance deviation determined by Gv If Gv = Avi Avj , then dv = δvij

Vgv Total genetic variance of locus v Vgv = p2
v(γv00 )

2 + 2pvqv(γv01 )
2 + q2

v(γv11 )
2

Vav Additive variance of locus v Vav = 2(pvα2
v0
+ qvα2

v1
)

Vdv Dominance variance of locus v Vdv = p2
v(δv00 )

2 + 2pvqv(δv01 )
2 + q2

v(δv11 )
2

γv00 ,w00 Genotypic effect of Av0 Av0 and Aw0 Aw0 γv00 ,w00 = E[P|Gv = Av0 Av0 , Gw = Aw0 Aw0 ]

γv00 ,w01 Genotypic effect of Av0 Av0 and Aw0 Aw1 γv00 ,w01 = E[P|Gv = Av0 Av0 , Gw = Aw0 Aw1 ]

γv00 ,w11 Genotypic effect of Av0 Av0 and Aw1 Aw1 γv00 ,w11 = E[P|Gv = Av0 Av0 , Gw = Aw1 Aw1 ]

γv01 ,w00 Genotypic effect of Av0 Av0 and Aw0 Aw0 γv01 ,w00 = E[P|Gv = Av0 Av1 , Gw = Aw0 Aw0 ]

γv01 ,w01 Genotypic effect of Av0 Av1 and Aw0 Aw1 γv01 ,w01 = E[P|Gv = Av0 Av1 , Gw = Aw0 Aw1 ]

γv01 ,w11 Genotypic effect of Av0 Av1 and Aw1 Aw1 γv01 ,w11 = E[P|Gv = Av0 Av1 , Gw = Aw1 Aw1 ]

γv11 ,w00 Genotypic effect of Av1 Av1 and Aw0 Aw0 γv11 ,w00 = E[P|Gv = Av1 Av1 , Gw = Aw0 Aw0 ]

γv11 ,w01 Genotypic effect of Av1 Av1 and Aw0 Aw1 γv11 ,w01 = E[P|Gv = Av1 Av1 , Gw = Aw0 Aw1 ]

γv11 ,w11 Genotypic effect of Av1 Av1 and Aw1 Aw1 γv11 ,w11 = E[P|Gv = Av1 Av1 , Gw = Aw1 Aw1 ]

gv,w Random two locus genetic effect If Gv = Avi Avj , Gw = Awk Awl
determined by genotypes Gv and Gw then gv,w = γvij ,wkl

δIgvij ,wkl
Epistatic Deviation δIgvij ,wkl

= γvij ,wkl − (γvij + γwkl )

δIaavi ,wk
Additive by Additive Deviation δIaavi ,wk

= E[P|Av = Avi , Aw = Awk ]− (αvi + αwk )

δIadvi ,wkl
Additive by Dominance Deviation δIadvi ,wkl

= E[P|Av = Avi , Gw = Awk Awl ]

−(αvi + αwk + αwl + δwkl )

δIddvij ,wkl
Dominance by Dominance Deviation δIddvij ,wkl

= E[P|Gv = Avi Avj , Gw = Awk Awl ]

−(αvi + αvj + δvij + αwk + αwl + δwkl )

L An unobserved phenotype, liability to disease L ∼ Φ(x)

t A threshold on the liability Individual is diseased if L > t
scale determining disease

ψ Prevalence of the disease with liability L ψ =
∫ ∞

t ϕ(x)dx

ζy The penetrance of some factor y ζy = Pr[L > t|y]
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All these individual locus effects are defined in the previous section. To
approach many loci, we start by building from two loci, v and w. To begin,
consider the notion of a two-locus genotypic effect (the conditional
expectation of phenotype given the two locus genotype), which for loci v and
w, we will call γvij,wkl when the two loci genotypes are Gv = Avi Avj , i, j ∈ {0, 1},
and Gw = Avk Awl , k, l ∈ {0, 1}

γvij,wkl = E[P|Gv = Avi Avj , Gw = Awk Awl .]

Here the γ tells us it is a genetic effect (mean phenotype given genotype). The
subscript vij tells us one of the loci involved is locus v and the genotype of
locus v is given by its subscript, Gv = Avi Avj . After the comma we find a second
locus is given, w, where the genotype of w is given by its subscript, Gw =

Awk Awl . Putting this all together we read γvij,wkl as the expected phenotype
of an individual given their genotype is Avi Avj at locus v and Awk Awl at locus
w. In general we will use v and w to correspond to distinct loci. All loci have
two alleles, and for these two loci we will use i, j ∈ {0, 1} to correspond to
the particular alleles Av0 and Av1 at locus v, and k, l ∈ {0, 1} for the alleles at
locus w. Think of the random variable gv,w corresponding the the two locus
genetic effect γ determined by the random genotype at the two loci, such
that gv,w = γvij,wkl when the genotype of Gv is Avi Avj and the genotype of Gw is
Awk Awl ,

E[gv,w] = E[E[P|Gv = Avi Avj , Gw = Awk Awl ]] = E[P] = 0

Var[gv,w] = E[(gv,w)
2]− (E[gv,w])

2 = E[(gv,w)
2]

= ∑
i,j,k,l

Pr[Gv = Avi Avj , Gw = Awk Awl ](γvij,wkl )
2

The next question is “how does the two locus genetic effect relate to the
individual loci effects?” Let us first assume that the way in which locus v and
w interact to create phenotype is their joint genetic effect is the sum of the
individual genetic effects. In other words, one possible way these loci might
interact is in an additive fashion, such that

γvij,wkl = γvij + γwkl

Call this manner of interaction, “additive”, because the joint genetic effect is just
the sum of the individual genetic effects. Of course, the loci need not interact in
an additive fashion. Quantitative geneticists traditionally use the term epistatic
to mean any sort of non-additive interaction between loci, but this term has
a less well-defined meaning in the human genetics community. For the sake
of convenience we will call these interactions between loci either additive, or
non-additive. Analogous to the dominance deviation within a single locus, let
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us think of a multilocus quantity that we will call the “interaction deviation,” or
others might call the “epistatic deviation,” which will measure the deviation
from additivity of the multilocus genotype. In particular, define the interaction
deviation δIgvij ,wkl

between these loci as

δIgvij ,wkl
= γvij,wkl − (γvij + γwkl ).

We will read this notation as δ indicating a deviation from additivity, due to
some genetic interaction Ig between genotype Avi Avj at locus v and genotype
Awk Awl at locus w. Corresponding to this interaction deviation, we will think of
a random variable dIgv,w whose value is given by δIgvij ,wkl

whenever the two loci
have genotypes Avi Avj and Awk Awl .

E[dIgv,w ] = E[gv,w − (gv + gw)] = 0 − (0 + 0) = 0.

Var[dIgv,w ] = E[(gv,w − (gv + gw))
2]− E[(gv,w − (gv + gw))]

2

= ∑
i,j,k,l

Pr[Gv = Avi Avj , Gw = Awk Awl ](δIgvij ,wkl
)2.

We can decompose the entire two locus genetic variance into its component
variances.

Var[gv,w] = Var[gv + gw + dIgv,w ]

= Var[gv] + Var[gw] + Var[dIgv,w ]

+2(Cov[gv, gw] + Cov[gv, dIgv,w ] + Cov[gw, dIgv,w ])

= Vgv + Vgw + Var[dIgv,w ]

+2(Cov[gv, gw] + Cov[gv, dIgv,w ] + Cov[gw, dIgv,w ]).

In this fashion we define the “total genetic interaction” between locus v and w,
VIgv,w , to be

VIgv,w = Var[dIgv,w ] + 2(Cov[gv, gw] + Cov[gv, dIgv,w ] + Cov[gw, dIgv,w ])

We will define VIgv,w as the “total interaction” and give it a symbol V to indicate
its relationship to a variance, but we should never lose sight of the fact that it
is not necessarily a variance. It is the sum of a variance, Var[dIgv,w ], plus several
covariances. If the genotype of locus v is independent of locus w these
covariances will be 0. However, any sort of correlation between genotypes at
different loci will cause the total interaction to include the deviation variance,
but also three covariances. When we examined the within locus additive by
dominance covariance we found these were necessarily 0, because of the
Hardy-Weinberg assumption. Here the equivalent assumption is linkage
equilibrium between the loci. For loci in linkage equilibrium (no correlation
between genotypes across loci), the total two locus genetic variance is sum to
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the genetic variance at each locus plus the deviation variance. On the other
hand, the non-random association of alleles due to proximity of the loci on a
chromosome, linkage disequilibrium (LD), will often have the effect of leading
to negative total interaction. In this case, the two locus genetic variance will
be smaller than the sum of the individual variance components. For all that
follows we may often refer to the total interaction as an interaction “variance”
but this must be seen as a shorthand, or an implied assumption of linkage
equilibrium, because the total interaction is not a proper variance, but a
variance/covariance sum and need not be positive. If LD is going to be treated
explicitly in any estimation of genetic effects, it is in this stage where it might
be most precisely handled.

A reasonable reader might object to the use of the term “variance” to ever
describe this total interaction. Such an objection is well grounded. We use
the term “variance” for historical reasons. Nearly every other derivation of
quantitative genetics from Fisher/Falconer through to Kempthorne explicitly or
implicitly assumes the state of one genetic locus (or environment, see below)
is independently chosen from any other. With that explicit assumption in mind,
the interaction variance, VIgv,w , is simply the squared sum of the interaction
deviation, Var[dIgv,w ], and is a proper variance. So, the historical use of that
term is correct and well warranted. However, beginning with the assumption
of uncorrelated genotypic or environmental states makes accounting for their
correlation when it does actually exist a considerable challenge. At some
level it makes one wonder to what extent quantities are even well defined
when the first assumption of the modeling framework is violated. Here, we
make no assumption about state correlation, and therefore have an ability to
explicitly model that correlation (as we may for LD), and we see the manner in
which state correlation affects the total variance is by adding (often negative)
interaction covariances. Thus, if one were to estimate the interaction variance
by subtracting the main effect variance from the total variance, in the presence
of state correlation, the calculated interaction “variance” can be negative. On
the other hand, if we chose to follow Kempthorne’s suggestion and estimate
the interaction variance as the squared interaction deviation, Var[dIgv,w ], the
estimated quantity will always be non-negative, but the component variances
will certainly not sum to the total variance unless genotypic/environmental
states are uncorrelated. Since we do not wish to assume away the very real
existence of LD, and wish to use terms that at least roughly correspond to their
historical usage, we find ourselves occasionally calling this total interaction an
interaction variance, even though it is not a variance and might be negative.
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Had this field developed after, say, the discovery of the structure of the lac
operon [8], we might find ourselves with less confusingly defined terms.

Setting these nomenclature objections aside, we can further decompose the
total genetic interaction into its additive and dominance components. To do so
we will first consider some multilocus genetic effect, γ, and find the deviation
δ of this multilocus genetic effect from its expectation under the assumption
that loci interacted in an additive fashion. Using the notation Av to indicate a
randomly picked allele at locus v, we define the deviations as

δIaavi ,wk
= E[P|Av = Avi , Aw = Awk ]− (αvi + αwk)

=
∑j,l Pr[Gv = Avi Avj , Gw = Awk Awl ]γvij,wkl

∑j,l Pr[Gv = Avi Avj , Gw = Awk Awl ]
− (αvi + αwk).

δIadvi ,wkl
= E[P|Av = Avi , Gw = Awk Awl ]

−(αvi + αwk + αwl + δwkl + δIaavi ,wk
+ δIaavi ,wl

)

=
∑j(Pr[Gv = Avi Avj , Gw = Awk Awl ]γvij,wkl

∑j(Pr[Gv = Avi Avj , Gw = Awk Awl ]

−(αvi + αwk + αwl + δwkl + δIaavi ,wk
+ δIaavi ,wl

)).

δIdavij ,wk
= E[P|Gv = Avi Avj , A2 = Awk ]

−(αvi + αvj + αwk + δvij + δIaavi ,wk
+ δIaavj ,wk

)

=
∑l(Pr[Gv = Avi Avj Gw = Awk Awl ]γvij,wkl

∑l(Pr[Gv = Avi Avj Gw = Awk Awl ]

−(αvi + αvj + αwk + δvij + δIaavi ,wk
+ δIaavj ,wk

)

δIddvij ,wkl
= E[P|Gv = Avi Avj , Gw = Awk Awl ]

−(αvi + αvj + αwk + αwl + δvij + δwkl

+δIaavi ,wk
+ δIaavi ,wl

+ δIaavj ,wk
+ δIaavj ,wl

+δIadvi ,wkl
+ δIadvj ,wkl

+ δIdavij ,wk
+ δIdavij ,wl

)

= γvij,wkl − (αvi + αvj + αwk + αwl + δvij + δwkl

+δIaavi ,wk
+ δIaavi ,wl

+ δIaavj ,wk
+ δIaavj ,wl

+δIadvi ,wkl
+ δIadvj ,wkl

+ δIdavij ,wk
+ δIdavij ,wl

).
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We can therefore write all 9 two locus genotype effects as a sum of the expected
effects assuming additivity and the appropriate 9 deviations from additivity.

γvij,wkl = αvi + αvj + δvij + αwk + αwl + δwkl

δIaavi ,wk
+ δIaavj ,wk

+ δIaavi ,wl
+ δIaavj ,wl

+δIadvi ,wkl
+ δIadvj ,wkl

+ δIdavij ,wk
+ δIdavij ,wl

+ δIddvij ,wjk
.

Corresponding to each of these deviations we think of random variables dIaav,w ,
dIadv,w , and dIddv,w induced by the random genotypes Gv and Gw, and we simplify
notation by combining “like” terms to get

dIaav,w = δIaavi ,wk
+ δIaavj ,wk

+ δIaavi ,wl
+ δIaavj ,wl

.

dIadv,w = δIadvi ,wkl
+ δIadvj ,wkl

+ δIdavij ,wk
+ δIdavij ,wl

.

dIddv,w = δIddvij ,wjk
.

Arriving at the full decomposition of the two locus genetic effects viewed as
random variables,

gv,w = av + dv + aw + dw + dIaav,w + dIadv,w + dIddv,w

Vgv,w = Var[av] + Var[dv] + Var[aw] + Var[dw] + VIaav,w + VIadv,w + VIddv,w

VIaav,w = E[(dIaav,w)
2] + Cov[dIaav,w , dIadv,w ] + Cov[dIaav,w , dIddw,w ]

VIadv,w = E[(dIadv,w)
2] + Cov[dIadv,w , dIaav,w ] + Cov[dIadv,w , dIddv,w ]

+2(Cov[dIaav,w , av] + Cov[dIaav,w , aw] + Cov[dIaav,w , dv] + Cov[dIaav,w , dw])

+2(Cov[dIadv,w , av] + Cov[dIadv,w , aw] + Cov[dladv,w , dv] + Cov[dIadv,w , dw])

VIddv,w = E[(dIddv,w)
2] + Cov[dIddv,w , dIaav,w ] + Cov[dIddv,w , dIadw,w ]

+2(Cov[dIddv,w , av] + Cov[dIddv,w , aw] + Cov[dIddv,w , dv] + Cov[dIddv,w , dw])

Thus, we have constructed the additive by additive, VIaa, additive by dominance,
VIad, and dominance by dominance, VIdd, total interaction as the sum of a
deviation variance and several covariance terms, which means that the total
interaction is not necessarily a true “variance”, and in the presence of LD might
be negative. In practice we will often assume that all these covariances are
absent or negligible, because the loci are in linkage equilibrium or nearly so,
and estimate each term as the squared deviation, or even as the residual
variance after subtracting the lower order terms. Extending this framework to
arbitrarily large numbers of loci is essentially more of the same. If there are a
total of N loci, we construct total variance terms as
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VG =
N

∑
v=1

Vgv .

VA =
N

∑
v=1

Vav .

VD =
N

∑
v=1

Vdv .

VGG =
N

∑
v=1

N

∑
w=v+1

VIgv,w .

VAA =
N

∑
v=1

N

∑
w=v+1

VIaav,w .

VAD =
N

∑
v=1

N

∑
w=v+1

VIadv,w .

VDD =
N

∑
v=1

N

∑
w=v+1

VIddv,w .

VGGG =
N

∑
v=1

N

∑
w=v+1

N

∑
z=w+1

VIgv,w,z .

....

VDD...D = VIdd1,2,...,N ,

where each of the newly introduced interaction terms are defined with
reference to the difference between the mean phenotype given that
combination of genotypes and/or alleles, and the expectation if all those
factors interacted in a strictly additive fashion plus all the lower order
interaction deviations. Of course, all of those total interactions are not true
variances but the sum of a deviation variance and a number of covariances,
making them all potentially negative in the presence of LD.

Next we extend this framework to include “environmental” influences on
phenotype. In the usual parlance of quantitative genetics, an environmental
factor is anything that can affect the phenotype that is not genetic. Aspects of
diet, exposure to the elements, contact with a virus, stochastic “noise” in the
statistical sense, or an enormous number of other things could all be
environmental influences on phenotype. With this broad definition in mind,
we imagine M distinguishable environmental factors Em, 1 ≤ m ≤ M. By
assumption environmental factor m can take on more than one state, and we
will write Em = x to indicate that environmental factor m is in state x.
Analogous to genetic effects we talk about the main effects (conditional
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expectation of phenotype given the environmental effect) ϵmx of being in state
x for environmental factor m, and the corresponding random variable em.

ϵmx = E[P|Em = x]

E[em] = E[ϵmx ] = E[E[P|Em = x]] = 0

Vem = Var[E[P|Em = x]] = E[(E[P|Em = x])2].

We model the effect of an environment in the same manner we model the
effect of a gene. An environmental effect is not a predetermined entity that
behaves identically in all contexts, but is only determined in an individual in the
presence of all other factors. The effect of an environment is therefore defined
to be the mean phenotype of individuals who experience that environment.
Environmental factors will interact with each other in some fashion. This
interaction could be the sum of their individual main effects (additive) or be
non-additive. We therefore consider the combined effects of environmental
factors m and s, whose combined effect is ϵmx ,sy when m is in state x and s is in
state y, and the deviation from additivity between these factors.

ϵmx ,sy = E[P|Em = x, Es = y]

E[em,s] = E[E[P|Em = x, Es = y]] = 0

δIemx ,sy
= ϵmx ,sy − (ϵmx + ϵsy)

VIem,s = E[(dIem,s)
2] + 2(Cov[em, es] + Cov[em, dIem,s ] + Cov[es, dIem,s ]),

where dIem,s is the random variable whose value is δIemx ,sy
when environment

m is in state x and environment s is in state y. If these environmental states
are uncorrelated with one another then VIem,s = E[(dIem,s)

2] , but if the state of
environment m correlates with the state of s, then the covariances might be
substantial, potentially leading to negative total interaction.

Genetic and environmental factors interact. This interaction might be purely
additive, or include some deviation from additivity. For locus v with alleles Avi

and Avj and environmental factor m with state x,

γϵvij,mx = E[P|Gv = Avi Avj , Em = x]

E[gev,m] = E[γϵvij,mx ] = E[E[P|Gv = Avi Avj , Em = x]] = 0

δIgevij ,mx
= γϵvij,mx − (γvij + ϵmx)

dIgev,m = gev,m − (gv + em)

VIgev,m = E[(dIgev,m)
2] + 2(Cov[dIgev,m , gv] + Cov[dIgev,m , em] + Cov[gv, em]),
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where gev,m and dIgev,m are the random variables associated with γϵvij,mx and
δIgevij ,mx

, respectively, and are determined by the random states of locus v and
environment m. Additive by environment and dominance by environment
interactions can be constructed in a similar fashion. Higher order total
interactions and deviation variances are constructed with the same logic, as
the deviation between the conditional phenotype and its expectation
assuming additive interaction, giving rise to

VE =
M

∑
m=1

Vem

VGE =
N

∑
v=1

M

∑
m=1

VIgen,m

VGGE =
N

∑
v=1

N

∑
w=n+1

M

∑
m=1

VIggev,w,m

...

It should go without repeating that all of these total interactions are not true
variances unless the states of the genotypes and environments are
uncorrelated. In the presence of correlation between genes and the
environment, total interaction can be negative.

2.3 The resemblance between relatives

Notice that up to this point we have made very few assumptions about
individual genetic, environmental or interaction effects. We have implicitly
assumed that the number of genetic and environmental factors is countable.
This assumption is certain for genetic factors which for man is surely bounded
in some fashion by the number of possible nucleotide combinations,
nucleotide modifications, and nucleotide insertions and deletions at the
≈ 3 × 109 human bases. It is likely theoretically bounded O(43×109

). The point
being that while the number of genetic factors contributing to phenotype
might be very, very large, it is nevertheless finite. Implicitly we have also
assumed that all the discussed effects are finite, and therefore have finite
variances, but this is a very weak assumption indeed, considering all effects
are ultimately defined in terms of conditional expectations of phenotypes of
“real” organisms, human beings in this case. Of course, it is possible to
consider phenotypes that might be infinite, by constructing a phenotype that
is a ratio of two other things where the denominator might be zero. Such a
phenotype could be infinite, so consider this a warning. The theory presented
here very much assumes all phenotypic values are finite. Many of these
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results could be undefined or simply wrong for infinite valued phenotypes.
We have made no other assumptions about the distribution of phenotypes or
the distribution of genetic and environmental effects. We have not assumed
any interaction is additive.

The only significant assumption that we have introduced is the assumption of
Hardy-Weinberg (HW) equilibrium. We have assumed HW equilibrium
throughout. Were we to relax this assumption it would complicate some of
the presentation and calculation of additive, dominance and interaction
effects. For the sake of simplicity of we have forgone this complication for
now. In a case of particular practical importance, population subdivision leads
to not only departures from HW within loci, the so-called Wahlund effect, but
it also causes correlation in allelic state between unlinked sites, i.e., it causes
the appearance of linkage disequilibrium (LD) between unlinked sites.
Correlation between unlinked sites induced by a structured population in turn
causes considerable practical challenges to estimating allelic associations with
phenotype. Some of these issues will be previewed in the discussion of LD
below, but they will not see any sort of in depth treatment until the third
paper in this series.

Under these extremely weak conditions, we decompose the phenotypic
variance. Choose an individual, p, at random from the population. Call their
phenotype Pp. E[Pp] = 0. Call the variance in their phenotype Var[Pp] = VP, the
total phenotypic variance. This individual has some genotype Gv at all N loci,
and experienced some set of environmental influences, Em for all M
environments. Thus,

E[Pp] = E[E[Pp|G1 = A1,i A1,j..., GN = AN,i AN,j, E1 = e1x, ...EM = emx ]]

= E[g0 + g1 + ...gn + e1 + ... + eM + dIg0,1 + ... +

dIgN−1,N + dIgg1,2,3 + ... + dIge1,1 + ... + dIe1,2 + .... + dIee....e1,2,....,M ]

= E[a1 + d1 + ... + aN + dN + e1 + ... + eM + dIaa1,2

+... + dIaaN−1,N + dIad1,2 + ... + dIae1,1 + ...dIe1,2 + .... + dIee...e1,2,..,M ] = 0

Var[Pp] = VA + VD + VE + VAA + VAD + VAE + VDE + VAAD + VADD + ... + VEE...E.

Now imagine two individuals 1 and 2 with phenotype P1 and P2. These two
individuals might be unrelated, in which case they are both random draws
from the population and Cov[P1, P2] = 0. For individuals who are related, a
convenient way to quantify their degree of relatedness is with something that
human geneticist call Cotterman coefficients [9] but here we will follow a more
Wright [10] inspired presentation. At any given genetic locus, individuals p1

and p2 might share 0, 1 or 2 alleles that are identical by descent (IBD), a term
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used to mean that the alleles are identical because the alleles were inherited by
both individuals without modification from a recent common ancestor. Let ρ0

be the probability that 0 alleles were inherited IBD at some locus. Let ρ1 be the
probability that exactly one allele was inherited IBD, and ρ2 be the probability
that both alleles were inherited IBD. By assumption these probabilities are the
same at all autosomal loci in the genome. Let ρ = ρ2 +

ρ1
2 be the“coefficient

of relatedness” between these two individuals. The simplest interpretation
of ρ is the expected fraction of the autosomal genome shared IBD between
the individuals. To find the resemblance between these relatives, which we
will quantify as the Cov[P1, P2], we begin with a single genetic locus and single
environmental effect.

Cov[P1, P2] = E[P1P2]− E[P1]E[P2]

= E[P1P2]

= E[(ap1 + dp1 + ep1 + dIae1,1p1
+ dIde1,1p1

)

×(ap2 + dp2 + ep2 + dIae1,1p2
+ dIde1,1p2

)]

= E[ap1ap2] + E[dp1 dp2] + E[ep1 ep2]

+E[dIae1,1p1
, ap2] + ... + E[dIde1,1p1

, dIde1,1p2
].

The last step used the fact that E[a, d] within a locus in Hardy-Weinberg is 0.
If these two individuals experience the environment independently of one
another the only non-zero terms above are E[ap1ap2] and E[dp1dp2]. Even if the
individuals have correlated environments, if there is no correlation between
an individual’s genes and the environments they experience, the only other
non-zero term is E[ep1ep2]. If we assume environments are independent of
genotype, then this can be simplified to

Cov[P1, P2] = E[ap1ap2] + E[dp1dp2]

= Pr[IBD0](E[ap1ap2|IBD0]] + E[dp1dp2|IBD0]]

+Pr[IBD1](E[ap1ap2|IBD1]] + E[dp1dp2|IBD1]]

+Pr[IBD2](E[ap1ap2|IBD2]] + E[dp1dp2|IBD2]]

= ρ0(0 + 0) + ρ1(
Va

2
+ 0) + ρ2(Va + Vd)

= ρVa + ρ2Vd.

We leave as an exercise for the student to show the transition between the
second and third lines above is correct, but the result is perfectly intuitive. If
two individuals share exactly one allele IBD, then they share half the additive
variance at this locus. If they share two alleles IBD then they share all the
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additive variance and all the dominance variance. Otherwise, there is no
expected correlation between the individuals. Extension of this result to
multiple loci, again with the assumption of uncorrelated environments
between the individuals, proceeds in a similar fashion to reach the well
known [7]

Cov[P1, P2] = ρVA + ρ2VD + ρ2VAA + ρ(ρ2)VAD + (ρ2)
2VDD

+ρ3VAAA + ρ2(ρ2)VAAD + ... + ....

The ρ2 before the VAA term comes from the fact that in order to share an
interaction between two loci the individuals must share one or more alleles at
both loci. The ρ(ρ2) before VAD derives from the requirement of sharing at
least one allele at one locus, and two at the other, and so forth. Notice that we
have arrived at the fundamental result of Fisher 1918/Kempthorne 1955
without making any distributional assumptions at all about phenotype or the
size or nature of genetic and environmental effects. This result holds if these
quantities exist and are finite. Thus, the observation that most phenotypes
are approximately normally distributed is not an assumption of quantitative
genetics, but evidence that there are likely many genetic and/or environmental
factors contributing to any nearly normally distributed phenotype, and many
of those factors are interacting in a nearly additive fashion. Normality is a
consequence of various Feller like versions [11] of the strong law of large
numbers which establishes that as the number of random variables included
in a sum grows large, if a sufficiently large subset of those factors are
uncorrelated, the sum will converge to a normal distribution. Thus, from our
perspective when a phenotype is observed to be normally distributed, or
nearly so, this should be taken as evidence that the phenotype is likely being
contributed to by a large enough set of genetic and/or environmental factors
acting near enough to additively that the strong law of large numbers
assumptions have been satisfied, thereby causing the phenotype to be
approximately normal.

For known familial relationships, such as parent, Pp, and offspring, Po, we
immediately reach the well known

Cov[Pp, Po] =
VA

2
+

VAA

4
+

VAAA

8
+ ... + ...

≈ VA

2
.
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The last line being the form of this result most commonly taught to students.
Viewed in this fashion, the student taught result is not so much an assumption
about a lack of interaction variance, but a consequence of the fact that
interactions “transmit” from parent to offspring diminished by a factor of 1

2 for
each successive level of interaction. So, unless the interaction variances are of
the same order of magnitude as the main effect, dropping these higher order
interactions is a natural approximation that will hold under most
circumstances. Similarly for full siblings s1 and s2 we have

Cov[Ps1, Ps2] =
VA

2
+

VD

4
+

VAA

4
+

VAD

8
+

VDD

16
+

VAAA

8
+ .... + ...

≈ VA

2
+

VD

4

≈ VA

2
,

with the last approximation assuming that dominance is weak in comparison
to additive effects.

For historical and practical reasons involved in animal husbandry, quantitative
geneticists created a particular abstraction often called the “mid-parent” which
is the mean phenotype of the two parents of some offspring. Thus if Pp1 and
Pp2 are the phenotypes of the two parents then Pmid =

Pp1+Pp2
2 , and if Po is the

phenotype of their offspring it is trivial to show that

Var[Pmid] =
Vp

2

Cov[Pmid, Po] =
VA

2
+

VAA

4
+

VAAA

8
+ ... +

≈ VA

2
.

All of this holds regardless of the distribution of phenotype or genetic and
environmental effects. At no point have we used normality or additivity or
any other strong assumption. We will do so for the first time now. For many
bivariate distributions of random variables X, Y, including bivariate normal
distributions, it is straightforward to show that

E[X|Y] = YCov[X, Y]
Var[Y]
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So, if we assume this relationship holds for the distribution of phenotypes
considered here (because the distribution is approximately normal, say) then
we arrive at the definition of heritability h2 and its natural interpretation

E[Po|Pmid] =
PmCov[Po, Pmid]

Var[Pmid]

=
Pmid(

VA
2 + VAA

4 + VAAA
8 + ...+)

VP
2

≈ PmidVA

VP

h2 =
VA

VP
.

Thus, we define heritability, h2, as the fraction of phenotypic variance due to
additive effects. We find that if phenotype is approximately normally
distributed then we can use h2 to predict the average offspring phenotype as
a function of the average parental phenotype. From this we get the
interpretation that VA, the additive variance, as the fraction of the phenotype
“transmitted” from parent to offspring. Or put slightly differently, parents
transmit only their additive variance to their offspring. This interpretation of
heritability has used the assumption of normality of phenotype. Nothing else
has. We should be reminded that this intuition was formed with an
approximation which dropped all the higher order additive interactions. On
the other hand, we should also note that under a wide range of models that
do not include any higher order interactions but which do not result in a
normally distributed phenotype (multiplicative models and a broader class of
exchangeable allele models [12]), the resemblance between relatives may be
reasonably approximated with results that assume precise normality.

For any arbitrary pair of relatives r1 and r2

E[Pr2|Pr1] =
Pr1Cov[Pr2, Pr1]

Var[Pr1]

=
Pr1(ρVA + ρ2VD + ρ2VAA + ρ(ρ2)VAD + (ρ2)2VDD + ... + ...)

VP

≈ Pr1ρh2

These results give rise to the most natural way to estimate h2, under the
assumption of normality of phenotype. Collect a number of pairs of individuals
with known familial relationship, pairs of a single parent and their offspring, say.
Measure the average phenotype of the parents, and average of the offspring.
The ratio of the offspring mean to the single parent mean is ρh2 = h2

2 . Slightly
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more formally, regress offspring values on their parental values, and the slope
of the regression is h2

2 . When the regression is performed offspring on mid-
parent, the slope is h2 = VA

VP
≤ 1. It is because offspring means are less than

mid-parental means that the best fit line was named the “regression line.” It
was the line that represented the fact that offspring had “regressed” towards
the mean relative to their parents. That this regression was the consequence
of transmission of only additive factors was the major genetic insight of Fisher
1918 [1] . Before his derivation, the existence of regression to the mean led to
some very unusual ideas about how inheritance of complex phenotypes might
work [13]. These ideas appear to those of us born after 1918 to be almost
bizarre and certainly very hard to fathom once the phenomenon is correctly
understood.

2.4 Accounting for linkage disequilibrium

In a formal sense, within the Kempthorne modeling framework, linkage
disequilibrium (LD) -the non-random association of variants at different loci,
often induced by small physical distances between them on the same
chromosome- can alter the size of the genetic effect, alter the distribution
between additive and dominance sub components of that effect, and induce
interaction deviation variance between the loci, with non-zero associated
covariances. In many biologically common cases there will be negative total
interaction, meaning the total multilocus genetic variance is less than the sum
of their individual components. We will give some suggestions for explicit
modeling of this, but the intuition for why this occurs is important and also
easy to see. Imagine two loci Gv and Gw in what is called “perfect LD.”
If two loci are in perfect LD, the genotype of every individual
at locus v is identical to the genotype at locus w. Thus, gv,w = gv = gw in all
individuals, and Vgv,w = Vgv = Vgw . The interaction deviance
dIgv,w = gv,w − (gv + gw) = −gv, and we immediately arrive at
Vgv = Vgw = Var[dIgv,w ] = Cov[gv, gw] = −Cov[gv, dIgv,w ] = −Cov[gw, dIgv,w ], and
the total interaction is VIgv,w = −Vgv . Thus, perfect LD creates a negative total
interaction of the same size as the main effects. As a general rule of thumb,
LD causes neighboring sites to have more similar genetic effects than they
would absent LD and induces negative total interaction.

To begin to develop a framework for explicit accounting for LD, we start with
some formal definitions. Imagine two genetic loci Gv and Gw with alleles
Av0 , Av1 and Aw0 , Aw1 respectively. Let us further assume that these two genetic
loci reside on the same chromosome. Thus, there are four possible haploid
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entities that population geneticists often call “gametes,” and human geneticists
“haplotypes,” that represent the identity of all possible allelic combinations at
these two loci on a single piece of DNA. Let pv and pw be the frequency of the Av0

allele and Aw0 allele respectively. Let qv = 1 − pv, qw = 1 − pw be the frequency
of the other allele at each locus. Let p00, p01, p10, p11 be the frequencies of a
haplotypes containing the Av0 Aw0 , Av0 Aw1 , Av1 Aw0 , Av1 Aw1 alleles respectively
(Figure 1).

Av0 Aw0

Freq[Av0Aw0] = p00

Av0 Aw1

Freq[Av0Aw1] = p01

Av1 Aw0

Freq[Av1Aw0] = p10

Av1 Aw1

Freq[Av1Aw1] = p11

Gv Gw

Freq[Av0] = pv Freq[Aw0] = pw D = p00 - pvpw

Figure 1 Two locus LD.

The population geneticist [6] defines, D, the standard measure of linkage
disequilibrium, and the related r2 as

D = p00 − pv pw

= −p10 + qv pw

= −p01 + pvqw

= p11 − qvqw

pv = p00 + p01.

qv = p10 + p11.

pw = p00 + p10.

qw = p01 + p11.

p00 = pv pw + D

p01 = pvqw − D

p10 = qv pw − D

p11 = qvqw + D

r2 =
D2

pvqv pwqw
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While this historical definition has its applications, a far more intuitively
informative presentation begins by thinking of the alleles at Gv and Gw as
Bernoulli random variables on {0, 1} with the state of Bernoulli variable
determined by the state of the allele at the locus on a given haplotype. Thus,
consider jointly distributed Bernoulli random variables Bv, Bw ∈ {0, 1} to
correspond to the state of the alleles at Gv and Gw on some randomly picked
haplotype. With this in mind,

E[Bv] = Pr[Picked Av0 ]× 0 + Pr[Picked Av1 ]× 1

= qv.

E[Bw] = qw.

Var[Bv] = E[B2
v]− E[Bv]

2

= Pr[Picked Av1 ]× 12 − q2
v

= qv − q2
v = pvqv.

Var[Bw] = pwqw.

Cov[Bv, Bw] = E[BvBw]− E[Bv]E[Bw]

= Pr[Picked Av1 Aw1 ]× 1 − qvqw

= p11 − qvqw

= D.

r2 =
(Cov[Bv, Bw])2

Var[Bv]Var[Bw]
.

Thus, the classical population genetics measure of LD, D, is nothing more than
what might be called the haplotypic covariance, and the LD measure r2 is the
squared correlation coefficient between the alleles at the two loci. Higher order
LD can be expressed in terms of higher order covariance terms.

To form an intuition for how this effects quantitative genetics quantities, let us
assume there is no dominance at either locus, and that the only interaction
between these two loci is induced by LD. Thus, let us begin by generalizing our
notion of α, the average phenotype of an individual with a randomly picked
allele, to η the average phenotype of an individual given a randomly picked
haplotype. Letting H donate a haplotype randomly picked from an individual
in this population,

ηvi ,wk = E[P|H = Avi Awk ]

= ∑
jl

pjlγvij,wkl .
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If we assume there are no interactions between these loci other than that
which is induced by LD, then ηv1,w1 − ηv1,w0 = ηv0,w1 − ηv0,w0 and ηv1,w0 − ηv0,w0 =

ηv1,w1 − ηv0,w1 , In other words, the lack of interaction other than LD implies the
difference in average phenotype between the alleles at the second locus are
unaffected by the state of the first locus, and vice versa. The only interaction
here is caused by the correlation in allelic state induced by LD. If a randomly
picked individual has phenotype P with genotype Gv = Avi Avj Gw = Awk Awl

with corresponding haplotypes Avi Awk and Avj Awl then

αv0 =
p00ηv0,w0 + p01ηv0,w1

pv
.

αw1 =
p10ηv1,w0 + p11ηw1,w1

qv
.

βv = αv1 − αv1

=
pv p10ηv1,w0 − qv p00ηv0,w0 + pv p11ηv1,w1 − qv p01ηv0,w1

pvqv

=
pv(qv pw − D)ηv1,w0 − q1(pv pw + D)ηv0,w0

pvqv

+
pv(qvqw + D)ηv1,w1 − qv(pvqw − D)ηv0,w1

pvqv

= [pw(ηv1,w0 − ηv0,w0) + qw(ηv1,w1 − ηv0,w1)]

+

(
D

pvqv

)
[pv(ηv1,w1 − ηv1,w0) + qv(ηv0,w1 − ηv0,w0)]

= [pw(ηv1,w0 − ηv0,w0) + qw(ηv1,w1 − ηv0,w1)]

+

(
D

pvqv

)
[pv(ηv0,w1 − ηv0,w0) + qv(ηv1,w1 − ηv1,w0)]

αw0 =
p00ηv0,w0 + p10ηv1,w0

pw

αw1 =
p01ηv0,w1 + p11ηv1,w1

qw

βw = αw1 − αw0

= [pv(ηv0,w1 − ηv0,w0) + qv(ηv1,w1 − ηv1,w0)]

+

(
D

pwqw

)
[pw(ηv1,w0 − ηv0,w0) + qw(ηv1,w1 − ηv0,w1)].

With these results in mind, let us now imagine an idealized population that
is identical to the current population in every way, except that there is no LD
(D = 0) between these loci. Call the difference in allelic effect sizes (βv and
βw in the actual population) β̃v and β̃w in the idealized population with no LD.
From the results above we immediately have
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β̃v = [pw(ηv1,w0 − ηv0,w0) + qw(ηv1,w1 − ηv0,w1)].

β̃w = [pv(ηv0,w1 − ηv0,w0) + qv(ηv1,w1 − ηv1,w0)].

βv = β̃v +
D

pvqv
β̃w

βw = β̃w +
D

pwqw
β̃v

In this manner we arrive at the fundamental intuition concerning LD’s influence
on effect sizes. The effect size at locus v, measured as the difference in average
phenotype between individuals with an A1 versus A0 allele at locus v, is equal
to what the effect size would be at locus v, absent LD, plus the effect at locus
w, absent LD, weighted by the haplotypic covariance between the two loci,
divided by the allelic variance at locus v, a quantity that might be called the
“LD regression coefficient.” This is all formally true within our Kempthorne
inspired interpretations of allelic effects. In a more Falconer inspired view, we
would likely think of β̃v and β̃w as the “true” effect sizes at the two loci, with βv

and βw being thought of as the “estimated” effects in the presence of LD. With
a Falconer view in mind, we might phrase this most simply as the apparent
effects at one SNP is the sum of the true effect at the SNP, plus the effects of
another SNP times the LD regression coefficient between them. Whether one
thinks of β̃ as either the “true” effect (in the Falconer sense) or the effect in a
population absent LD (in the Kempthorne sense), calculation of β̃ could prove
extremely useful in applications where effects estimated in one population
will be applied to another population with differing LD. This also suggests a
potential approach for accounting for LD in a study. If we again assume a
lack of dominance or interaction from any source other than LD, and further
assume that higher order LD is reasonably approximated by pairwise LD, for
all SNPs in a given region, we can begin by estimating their effect sizes, in the
Kempthorne sense, β⃗. If we also have estimates of the LD covariance (Dv,w)
between all pairs of sites [v, w], and individual site allele frequencies pv, qv,
we can construct an LD regression matrix M with mv,w = Dv,w

pvqv
, and use the

relationship

β⃗ = M⃗̃β.
⃗̃β = M−1 β⃗.

In practice, the LD matrix is likely to be very stiff (frequently with degenerate
rows from pairs of sites in perfect LD), so there will necessarily be numerical
challenges with implementing this sort of approach, but in principle this idea
could be used for explicit accounting for LD, and application of estimates
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taken from one LD setting into another. Of course, this suggestion assumes
the number of sites in LD with each other is small enough that a matrix
inversion is plausible (i.e., thousands, not billions of sites). Population
subdivision induces the appearance of LD between unlinked sites, i.e.,
haplotypic covariance between sites not actually on the same haplotype,
throughout the entire genome, and as a result the number of sites in LD with
one another can be, effectively, the entire genome when population
subdivision is present. This is the fundamental reason estimation of effects
generally include covariates measuring or accounting or population structure.
This topic will be treated in much greater detail in the third paper in this
series.

2.5 Intuition about distributions, interaction, and scaling

The only point in which normality of phenotype was assumed was when
heritability was used to predict the mean phenotype of one relative given the
other. Regardless of whether or not normality of phenotype holds, all of the
quantities described here exist and are well defined. Defining narrow sense
heritability as h2 = VA/VP, heritability is well-defined and can be estimated
from the covariance between relatives as described. Whether it has the
property of predicting the phenotype of one relative given the other may
depend on how closely the phenotypic distribution resembles a normal
distribution, but heritability exists and is well-defined. In general, knowing the
full distribution of the phenotype can be incredibly important because it can
guide the choice of statistical model for inference, and choosing the wrong
model often leads to unreliable estimation, inference, and prediction. These
issues are seen again in the discussion of binary phenotypes below.

Nothing about this derivation assumed that factors are in any sense
independent or interact in an additive fashion. Interactions are defined in
terms of a deviation between observed conditional mean phenotype and the
expected if the factors did happen to interact in an additive fashion. When
additivity holds these interactions will be 0. Thus, assuming additivity is
exactly equivalent to assuming that interactions do not exist, and vice versa.
In a particularly important situation, LD, interactions between neighboring
sites exist, and often result in a negative total interaction.

Overall we can view the total interactions as being contributed by two
components. The first component is a variance induced by a deviation from
additivity caused by the effect of two or more factors differing from the sum
of the individual factor effects, e.g., Var[dIgv,w ]. This component will be positive
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whenever the combined effects of multiple factors does not equal the sum of
their individual effects. The other component is induced by correlation
between the states of the factors and are covariance terms. If the genotype at
one locus is correlated with the genotype at another, if the genotype at a locus
is correlated with an environmental state, or two environmental states are
correlated with each other, these covariances could be non-zero, and might be
negative. Thus, interactions can be thought of as composed of a variance
contributed by a deviation from additivity, and covariances caused by
non-independence of genotype, environment, or both. For uncorrelated
genes / environments, all interactions are the variance due to deviation from
additivity.

Nothing about this depends on phenotypes being normally distributed, or that
the factors interact in an additive fashion, or that the factors are on similar
“scales.” An interaction arises when factors have correlated states, or if the
average phenotype of a combination of factors differs from the sum of their
individual effects. Assuming a sufficiently large number of observations, for
discrete factors such as genotype or those environments that can only take a
finite number of different states, interactions can be estimated directly from
individual-level data – data that gives phenotype and the factor states (such as
genotype) for all individuals – essentially by finding one mean and subtracting
another mean. This is all well-defined, above. If on the scale phenotype is
measured, the effect of the combination of factors is the sum of the individual
effects, no interaction exists. Otherwise it does. A non-linear transformation of
the scale of the phenotype (taking the log of the phenotype, say) will necessarily
change the size or even the existence of interactions. On one phenotypic scale,
there might be no interactions, but on some other non-linear transformation,
interactions may exist and be large. Thus, by definition, an interaction exists,
or does not exist, on the scale on which the phenotype is measured. Change
the scale, change the nature and size of the interaction. Interaction is not a
biological quantity here, but a statistical one that describes the relationship of
conditional expectations on whatever scale phenotype is measured. The strong
law of large numbers convinces us that when phenotype is measured in a way
that results in the phenotype being approximately normally distributed, we are
likely to observe fewer statistical interactions. As a result it is often helpful to
transform phenotypes to have a more normal like distribution, so that less of
the total phenotypic variance derives from interaction. The partition of variance
into their additive, dominance and interaction components is fundamentally,
unavoidably, a function of the scale on which phenotype is measured. Change
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the scale in a non-linear way, and the partition of the variance components
will change. Concepts of heritability are defined with respect to the scale of
the phenotype. As quantitative geneticists we think of the scale which makes
phenotype appear closest to normally distributed as the “natural scale” because
this is the scale which usually results in the largest fraction of the variance
being additive, and thus is the scale with the greatest power to predict one
individual’s phenotype given a relative, which may be the goal of the analysis.

For continuously distributed factors there is a fundamental challenge not
with definition, but with estimation. The interaction is still defined as the
difference between the multivariate conditional expectation, and the sum of the
marginal conditional expectations, but there is a central challenge involved with
estimating those conditional expectations. Efficient estimation likely requires
knowledge of the underlying multivariate distribution. For multivariate normal
distributions with constant and equal variances, this value can be conveniently
estimated as a cross-product term in a linear regression. For multivariate
distributions with more complicated variance structures, interactions may be
estimable more robustly in a general linear model framework, or with other
even more sophisticated schemes. Nevertheless, the quantitative geneticist
must never lose track of the fact that a cross-product term in some sort of
linear model is not the definition of an interaction, but a method to estimate
the interaction. When the underlying factors are continuous, this may be the
only convenient method of estimation. In practice the utility of a cross-product
estimator in a linear modeling framework will likely be deeply dependent on
deviations from normality, the scale of the underlying factors, and covariance
structures between the factors. Thus, for traits with a continuously large
number of states, the efficiency of the interaction estimator may be crucially
dependent on the scale of the phenotype and the scale of the underlying
factors. For factors with only a finite number of states (like genotype), with a
sufficiently large number of observations of the factors under consideration,
interactions can always be estimated more simply as a difference in means.
Problems associated with the estimation of interactions using a cross-product
term in a linear model can be avoided for any discrete factor, such as genotypes
or environments, with only a finite number of observable states.

2.6 Intuition about dominance and interaction sizes

Dominance is a term used by population geneticists to describe the
relationship between the phenotype of the heterozygote and the two
homozygotes. If the heterozygote has a phenotype equal (or nearly equal) to
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one of the homozygotes, we tend to say the allele associated with the
homozygote genotype which is equal to the heterozygote phenotype is
“dominant” to the other allele. Conversely we say the allele associated with
other homozygote genotype is “recessive.” Additivity is a form of partial or
incomplete dominance where heterozygote phenotype is between the two
homozygous phenotypes. Over/Underdominance is used to describe
heterozygote phenotypes outside the range of the two homozygotes
(above/below).

These definitions are well ingrained in population genetics. Dominance is
nearly synonymous with the phenotype of the heterozygote. As a result there
is, perhaps, an intuitive desire to believe that a quantitative locus can be
described as either additive, or if not additive with only one additional
parameter to describe the heterozygous phenotype, ala 1, 1 − hs, 1 − s in a
single locus population genetics scenario. This is simply not true when the
additive effect is defined as the mean phenotype of the allele. A locus is either
additive, in which case all three dominance deviations are 0, or it is not
additive, in which case all 3 deviations are non-zero. Any attempt to
parameterize this system with only two or fewer values will lead to none of
them being interpretable as the additive effect, unless the locus is additive.

Another important insight is that the size of the dominance variance is very
much a function of allele frequency. The only possible way for the dominance
variance to be a large fraction of the total genetic variance is for the rare
allele to be significantly recessive, i.e., for the heterozygote to have phenotype
much closer to the common homozygote phenotype. This can be intuitive. Rare
alleles are found more often as heterozygotes than homozygotes. The rarer the
allele the truer this is. So, the mean phenotype of a rare recessive allele tends to
be closer to the heterozygote phenotype than the homozygote, which results
in greater deviation from additivity. Intuitively the additive approximation to all
three genotype means is most in “error” when the rare allele is most recessive,
and the size of this error increases with increasing rarity of the recessive allele.
Stated the other way around, for a recessive locus where the recessive allele
is common, most of the genetic variance will be additive. A recessive locus
where the recessive allele is rare will have mostly dominance variance.

Finally it should be clear that each of the interaction terms is defined by the
difference between the observed mean phenotype and what would be
expected under additivity plus all the interactions at a “higher level”. Additive
by dominance expectations include all the appropriate additive by additive
interactions. Three way additive expectations include all the appropriate
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two-way (additive-by-additive) interactions, etc. Thus, unless there is a
complicated pattern of correlation between states, it should be common for
each level of interaction to be smaller in magnitude than the previous level. In
the absence of correlation between states, each level of interaction is the
residual variance after accounting for all the main and interaction effects on
the previous level. As a result it is perfectly natural to expect
VG > VGG > VGGG > .....

3. Results and Discussion

Many human “disease” phenotypes, diastolic blood pressure, say, are well
modeled and understood using the quantitative genetic machinery described
above. Diastolic blood pressure is approximately normally distributed in most
studies [14]. Investigators can and frequently do estimate heritability of the
trait from family studies (sib-pairs or parents and offspring, say) [15] in the
manner described above. At individual SNPs, the effect, β = α1 − α0, of
substituting an A1 allele for an A0 is frequently estimated in some sort of
regression framework. If we call this locus v, the heritability due to locus v, h2

v,
can be estimated from this regression analysis [16]. Recalling as shown above
pα0 + qα1 = 0,

h2
v =

Var[av]

VP
.

Var[av] = 2(pα2
0 + qα2

1)

= 2(pα2
0(p + q) + qα2

1(p + q))

= 2(p2α2
0 + pqα2

0 + pqα2
1 + q2α2

1)

= 2(p2α0
−qα1

p
+ pqα2

0 + pqα2
1 + q2α1

−pα0

q
)

= 2(−pqα0α1 + pqα2
0 + pqα2

1 +−pqα0α1)

= 2pq(α2
0 − 2α0α1 + α2

1)

= 2pq(α1 − α0)
2

= 2pqβ2.

Thus, in a standardly designed Genome-Wide Association Study (GWAS) of a
quantitative disease phenotype, such as diastolic blood pressure, the
phenotype, P, is measured in a large number of individuals, and in those same
individuals genotype is determined at a large (perhaps 106 or more) number, n,
of SNPs. At each locus the A0 and A1 alleles are coded as 0 and 1 respectively,
and the genotype is coded as the sum of the alleles. The investigator then
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performs n independent linear regressions of phenotype as the outcome and
genotype as the predictor, including any measured environmental co-variates
that correlate with outcome, and often co-variates estimated from the entire
genome’s genotypes to account for population structure within the study [17].
Alternatively, and perhaps more technically appropriate, a linear-mixed model
might be performed where the rest of the genome’s genotype is treated as a
random (≈ VA) effect [18] . A detailed discussion of why these measures of
genome-wide genotype are included is a topic of paper three.

The result of this study is n independently estimated β’s. If none of these sites
were in LD with one another, and no other genetic interactions exist, and there
are SNPs in all areas of the genome with genetic contributions to phenotype,
VA, and consequently heritability, could be estimated as 2pqβ2 summed across
all SNPs. This is the insight that lies at the heart of LD Score regression and
related methods [19]. Alternatively, VA could be estimated as the random
effect term in a linear mixed model [20].

Somewhat recently, a frequently useful form of analysis has developed, often
called polygenic risk scores (PRS) [21] or some related phrase. In this form of
analysis, β’s are usually estimated in one study, and then in a second study,
individuals with known genotype have their expected phenotype calculated
using the first study’s β’s. Details and challenges associated with this style of
analysis will be discussed in much greater detail in the second in this series of
papers.

3.1 Binary traits

In many ways, the field of human genetics arose largely independently of any
quantitative genetics ideas. For much of its early history [22, 23] the field was
largely concerned with understanding nearly binary traits (traits with only two
major phenotypes) under nearly Mendelian control (single locus genetics). At
first glance, there was no obvious connection between the modeling framework
presented here [24], which often results in approximately normally distributed
phenotypes, and the approximately binary traits that were of deepest interest
to human geneticists.

In a seminal 1965 work, Falconer [25] made clear a natural connection between
human binary phenotypes and the quantitative genetics framework used
here. The key idea was to suppose that a binary phenotype is like any other
quantitative phenotype, but observed on “the wrong scale.” For any binary
trait of interest, Crohn’s Disease (CD), say, humans are characterized as either
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having CD, or not. However, following Falconer, quantitative geneticists will
think about CD like any other quantitative trait. To do so, they will assume there
is a related trait which they will generally call “liability” to CD. This trait, liability
to CD, is a quantitative trait like any other. It is contributed to by genes and the
environment. Its variance components can be decomposed as described above.
However, liability is not directly observable. One can not observe or measure
liability to CD directly. Instead, the effects of the existence of a threshold t on
that liability scale can be observed (Figure 2). Individuals with liability greater
than or equal to t are observed to have CD. Individuals with liability less than t
do not have CD.
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Figure 2 Normally distributed liability with disease determining threshold at liability
greater than 2.

In our personal experience, many physician scientists will immediately
express skepticism about the applicability or utility of this abstraction, “liability
to disease,” to their particular areas of study. Interestingly, one of the first
implications of this abstraction is that there ought to exist individuals with
liability very near the threshold. Presumably such individuals will often be very
hard to classify. They are “unaffected” people who nearly have the disease, or
they are affected people who have only a very mild form of the disease. These
are individuals who two well trained physicians might reasonably disagree on
whether or not such a person formally qualifies for diagnosis of the disease.
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Viewed in this light, we can see the abstraction of an unobservable liability is
the cause of the existence of individuals who either slightly do, or do not,
reach diagnostic criteria for a disease. Such individuals have liability very near
the threshold, and because liability is unobservable directly, two perfectly well
trained physicians may disagree about which side of the threshold a particular
individual lies.

For all that follows we will treat this threshold on the liability scale as a fixed
quantity determined inexorably by nature. As such, this threshold is very
much a theoretician’s abstraction. The threshold exists, and therefore some
people have disease and others do not. It offers nothing resembling insight or
intuition for how and why it exists or how differing groups of people might have
differing frequency of disease, other than to say their thresholds must differ.
In the fourth paper in this series, the thresholding model will be examined
in some detail with particular emphasis on understanding how prevalence
differences between males and females can be understood and modeled, with
a particular emphasis on examining the effect of the X-chromosome.

While we have gone to pains to emphasize that very little before this point
made any assumption about the distribution of phenotype, because liability is
unobserved, in order to make any further progress we must make some
assumptions about the distribution of liability. Here we assume for the first
time that liability is well approximated with a normal distribution. We are not
assuming all factors are additive, or that correlation in states do not exist, but
we are assuming that enough uncorrelated factors exist that some version of
the strong-law of large numbers holds and that liability is nearly normally
distributed [26]. While it is certain that many (most) observable traits are
nearly normally distributed [27] , the assumption of complete convergence in
distribution to normality is a far stronger assumption than we have made up
to this point. That meaningful departure from normality may not be
particularly common even in the presence of linkage disequilibrium, some
alleles of moderate effect, and strong selection (disease itself is likely a
selective pressure) [28] is reassuring. Thus, here for the first time we assume
a fully normally distributed trait, which we call liability to some binary
phenotype, often a human disease. Because this normally distributed trait is
unobserved, we can assume it is parameterized in anyway we please. For
convenience we will assume that liability has mean 0, and total variance
VP = 1, i.e., follows a “standard” normal distribution. For such traits heritability
h2 = VA/VP = VA. Thus, it will not be uncommon for human quantitative
geneticists to call something heritability or a contribution to heritability, while
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clearly estimating VA, or Vav the additive variance due to locus v. In fact, as a
field Vav is often called the “SNP heritability” of locus v. When VP = 1

heritability and additive variance are identical in value, but interchanging their
terms can certainly lead to confusion, particularly in students new to the field.
Finally, for convenience we will always orient the threshold t to be a positive
value. Thus, by convention increasing liability increases the chance of disease,
and decreasing liability has the opposite effect.

3.2 Human disease quantities

The human genetics field often has its own set of terms of art that are
sometimes confusing to classically trained population or quantitative
geneticists. Above we saw that human geneticists often call Wright’s IBD
probabilities Cotterman coefficients. Here, for the sake of explicit
understanding, we will define several terms that frequently occur in human
disease studies.

We begin by assuming there is a population of humans that at least
approximately corresponds to a single, finite Fisher-Wright population in
Hardy-Weinberg equilibrium. In this population, there is a quantitative
phenotype L, which is the liability to some disease of interest. There is a
threshold, t, on this liability scale such that individuals with liability above this
threshold, L > t, are said to be diseased, and individuals with liability below t
are said to be “healthy” or not to have the disease in question. The term
“prevalence” of a disease, ψ is the fraction of the population with disease and is
uniquely determined by t,

ψ =
∫ ∞

t
ϕ(x)dx

= 1 − Φ(t)

t = Φ−1(1 − ψ),

where ϕ(x) is a standard normal probability density, Φ(x) is a standard
normal cumulative distribution, and Φ−1(x) is its inverse. Thus, we think of
the prevalence of a disease as determining the threshold on the liability scale
beyond which individuals are diseased.

It might be noted throughout everything that we have done, we have ignored
an important practical consideration. Many, perhaps most, phenotypes change
over the course of an organism’s lifetime. Weight, height, blood pressure, can
change as an individual gets older. Thus, from a practical standpoint phenotype
might have been defined and measured relative to some age, weight at age
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10 years, or blood pressure at age 50-60, say. Alternatively, we might ignore
this issue entirely and allow the phenotypic measure to include anyone at any
age, and therefore if the phenotype varies over age, some of the phenotypic
variance is likely accounted for by age itself. In this context age is best viewed
as an environmental factor contributing to phenotype. With respect to a binary
phenotype, we see these concepts played out in notions of “incidence” and
“prevalence.” Like seemingly all terms in genetics, there is variability in how
these terms are used and defined, but often incidence is used as a measure of
the number of individuals who newly develop a binary phenotype within a short
period of time. Prevalence is usually used as the sum of incidence over a period
of interest. Thus, you can think of the incidence as the rate disease is diagnosed,
and prevalence as the total fraction of diseased individuals diagnosed during
that time. When very precisely defined, incidence might be a density and
prevalence a cumulative distribution. Prevalence, therefore, likely includes
some measure of age in its definition (disease before age 21, say), or if anyone
at any age is included, prevalence is best thought of as “lifetime” prevalence,
the fraction of individuals diagnosed with the condition at any point before
death. Here we use prevalence to mean the total fraction of the population
with the disease, however that population is defined with respect to age.

One of the key questions in human genetics is “What effect does a given SNP
have on disease liability?” Within our Kempthorne framework, we imagine this
effect causes the mean liability of individuals with different genotypes to differ
(Figure 3). If we could observe liability directly, we could immediately apply
all of the previous machinery. Here, though, liability is not directly observed.
Instead, in the classical human genetics experiment, a number ND people with
disease are identified along with N̸D people without the disease. By convention
people with the disease are often called “cases” and people without the disease
called “controls.” Cases and controls are often collected in a very biased way
relative to disease prevalence. Usually cases are dramatically oversampled such
that ND ≫ ψN̸D. Regardless of the sampling proportions, the fundamental
data collected is the counts n00,n01,n11 of the three genotypes A0A0, A0A1,
A1A1, broken down by case, nD

ij , and control n ̸D
ij , nij = nD

ij + n ̸D
ij status. It

is perhaps not immediately intuitive, but given disease prevalence ψ, these
counts are sufficient to estimate all of the above described quantitative genetics
quantities. If fij and allele p, q are the true genotype and allele frequencies
in the population, and f D

ij , f ̸Dij corresponding values in the diseased and not
diseased subsets of the population, we can begin by estimating ˆf D

ij and ˆf D
ij
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from case / control count data, and then proceed using these estimates in
place of the parameters they represent.

ˆf D
ij =

nD
ij

ND

ˆf ̸Dij =
n ̸D

ij

N̸D

pD = f D
00 +

f D
01
2

qD = 1 − pD

p ̸D = f ̸D00 +
f ̸D01
2

q ̸D = 1 − p ̸D

fij = ψ f D
ij + (1 − ψ) f ̸Dij

p = ψpD + (1 − ψ)p ̸D

q = 1 − p.

The term penetrance of X is the conditional probability of an individual being
diseased given they are in state X. Thus, we can consider the penetrance ζ of
a genotype Gij, the probability an individual is diseased given their genotype
is Ai Aj at this locus. We can also think about penetrance of an allele Ai, the
probability an individual is diseased given they have an Ai allele. Thus,

ζGij = Pr[L > t|G = Ai Aj]

= Pr[D|G = Ai Aj]

ζAi = Pr[L > t|A = Ai]

= Pr[D|A = Ai].

With application of Bayes’ theorem, penetrances can be immediately estimated
from the case/control data.

Pr[D ∩ G = Ai Aj] = Pr[G = Ai Aj|D]Pr[D]

= Pr[D|G = Ai Aj]Pr[G = Ai Aj].

ζGij =
f D
ij ψ

fij

ζA0 =
pDψ

p

ζA1 =
qDψ

q
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Figure 3 Genotypes with differing mean liability have differing penetrances. Each
genotype’s liability density has equal variance, 1 − Vg, but unequal means. p = 0.7,
γ11 = 0.5, γ01 = 0.1. In the top panel, the area under each liability curve is scaled to
the genotype frequency, p2, 2pq, and q2.

Thus, from the overall prevalence and genotype counts in cases and controls,
we can estimate the penetrance (probability of disease given genotype/allele)
of both alleles and all three genotypes. Of course, as quantitative geneticists
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we measure effect sizes in terms of mean effects on liability, but that too is
now immediately available, with a sensible approximation, or can be found
numerically. To find this, recall that we have normalized liability to have VP =

1. If the three genotypes at this locus have mean liability γ00, γ01, and γ11

respectively, then

Vg = f00γ2
00 + f10γ2

01 + f11γ2
11.

ζGij =
∫ ∞

t
ϕ(x; γij, 1 − Vg)dx

=
∫ ∞

t−γij

ϕ(x; 0, 1 − Vg)dx

≈
∫ ∞

t−γij

ϕ(x; 0, 1)dx.

γij ≈ t − Φ−1(1 − ζGij).

αi ≈ t − Φ−1(1 − ζAi),

where ϕ(x; µ, σ2) is a normal density with mean µ and variance σ2. The above
approximations hold whenever Vg ≪ 1. Since for the vast majority of human
disease [29] there are at most a handful of sites that explain more than 0.1%

of the variance, this approximation is almost always very good. When trying to
estimate something that explains a truly substantial fraction of the variance, a
Newton-Raphson iteration (or just about any other kind of numerical search)
will converge quickly. Nevertheless, even for very small genetic variances it
is often useful to estimate “all but one” of the effects, and find the remaining
effect using the fact that the average effect must be zero. Thus, it is often
helpful to estimate these effects as

γ11 = t − Φ−1(1 − ζG11).

γ01 = t − Φ−1(1 − ζG01).

γ00 =
−( f11γ11 + f01γ01)

f00
.

α1 = t − Φ−1(1 − ζA1).

α0 =
−qα1

p

Calculating effects in this manner assures that the population mean remains
0 despite the approximation used for the residual variance. Thus, starting
with only prevalence and the counts of genotypes we have arrived at all the
quantitative genetic quantities needed to calculate additive and dominance
contributions to variance.

As discussed above, for quantitative traits, many researchers estimate
interaction effects from a cross-product term in some sort of linear model.
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These estimation procedures tend to be most efficient when the underlying
traits are normally distribtued. Since liability can not be directly observed,
interactions can not be estimated in this fashion here. Nevertheless, higher
order interactions can be approached the same way main effects are, via
counts of individuals with two (or more) locus genotypes, divided between
cases and controls. For instance, if f D

vij,wkl
and f ̸Dvij,wkl are the frequency of the

combination of genotypes Avi Avj and Awk Awl at loci v and w, then

fvij,wkl = ψ f D
vij,wkl

+ (1 − ψ) f ̸Dvij,wkl .

ζGvij ,wkl
=

f D
vij,wkl

ψ

fvij,wkl

.

γvij,wkl ≈ t − Φ−1(1 − ζGvij ,wkl
).

δIgvij ,wkl
= γvij,wkl − (γvij + γwkl ),

and in a similar manner all other interaction quantities can be estimated. As
discussed above, for continuously distributed factors, it may be impossible to
estimate interaction on an unobserved liability scale, but for discrete factors
such as genotype, interaction deviations and variances can be calculated
directly from the difference between average liability for the combination of
factors and the sum of the individual factor effects given only case/control
frequencies and the assumption of an approximately normally distributed
liability.

Historically effect sizes in human genetics tend to be reported as either a
“relative risk” or an “odds ratio.” Both quantities are some sort ratio of the
penetrances. In general, the relative risk of X to Y, is Pr[D|X]

Pr[D|Y] , i.e., it is the ratio
of the penetrance of X to the penetrance of Y. Building on historical gambling
terms, the “odds” of something is the probability the event happens, divided by
the probability the event does not happens. Thus the odds of X are Pr[D|X]

1−Pr[D|X]
. So,

the odds ratio of X to Y is Pr[D|X](1−Pr[D|Y])
Pr[D|Y](1−Pr[D|X])

. Thus, it might be natural to discuss
the odds ratio of the A1 allele to the A0 allele, or even the G11 genotype to the
G00 genotype, say.

For very practical reasons the odds ratio of A1 to A0 (or the other way around)
is the most commonly reported effect size estimate in all human genetics
studies. The reason for this is that odds ratios (OR) can be estimated in the
presence of covariates in a very natural way. Recall for a classically observed
quantitative phenotype we might commonly estimate β for a SNP from a linear
regression (or linear mixed model, etc.) that included any covariates known to
correlate with phenotype, such as some measured environmental variable (or
related quantity such as sex or age), and almost always including estimates
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of genome-wide genotype to account for population structure (the fact that
not all samples come from a single idealized randomly mating population).
The outcome of this linear regression is an estimate of the mean effect β of
substituting an A1 allele for an A0 allele on phenotype. From strictly genotype
count data it is hard to immediately imagine a framework that would allow
estimation of β while accounting for covariates in a similar fashion. Logistic
regression turns out to be the non-obvious, but extremely practically useful
approach to the problem.

To understand why, Figure 4 plots the penetrance on the Y-axis of an allele
with mean liability (Z, shown in standard deviations where a standard
deviation is 4√

2π
) on the X-axis for a trait with prevalence 0.5 and threshold

t = 0 versus a standard logistic curve ( 1
1+e−x ). While this is for a very specific

normal distribution, the intuition formed is that if liability is well approximated
by a normal distribution then the penetrance for an allele is likely well
approximated by a logistic function. Logistic regression is a relatively simple
and widely available numerical procedure to estimate the odds ratio of A1 to
A0 from case/control count data by fitting the observations to logistic curves
for the penetrances of each allele. This is done without having to know
prevalence, or even overall allele frequency, and the estimate can account for
the effects of any number of covariates as simply as ordinary linear regression.
The practicality and the utility of this approach should be clear.
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Figure 4 Penetrance assuming normally distributed liability versus logistic
approximation for a trait with threshold at 0.
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To a quantitative geneticist the output of a logistic regression (the odds ratio
OR) is not particularly useful per se. Absent knowledge of the disease
prevalence, it can only be viewed as an approximation to an interesting but
not particularly interpretable quantity. However, if disease prevalence is
known (or estimated) the odds ratio can be converted into our standard
measures of effect. To do so we note that

Pr[D] = Pr[D|A0]Pr[A0] + Pr[D|A1]Pr[A1].

ψ = pζA0 + qζA1 .

ζA0 =
ψ − qζA1

1 − q
.

OR =
ζA1(1 − ζA0)

ζA0(1 − ζA1)
.

From the above one can solve for ζA0 , albeit in a painful blizzard of algebra
involving quadratic terms. Usually one assumes that the common allele has a
penetrance nearly equal to population prevalence and reaches

OR ≈ ζA1(1 − ψ)

ψ(1 − ζA1)

ζA1 ≈ ORψ

1 + ψ(OR − 1)

ζA0 =
ψ − qζA1

1 − q
.

Of course, one could numerically iterate these ζ ’s to converge to the exactly
estimated OR, but given that the logistic curve itself is an approximation to
penetrance of a normally distributed liability, seeking such precision seems
a bit like overkill. Estimated in this fashion the two allelic penetrances are
consistent with the overall prevalence of the disease, and for anything other
than absurdly large effect sizes, have odds ratio close to the estimated value
from the logistic regression. With the estimates of penetrances in hand, we
can convert back to mean effects on the liability scale, and again use all of our
standard quantitative genetics ideas to arrive at notions such as SNP heritability
etc. estimated from a logistic regression with case/control counts.

3.3 Heritability of a disease

As first discussed by Falconer [25] , this same framework allows us to estimate
overall heritability of any binary phenotype such as a human disease. To do so,
one first needs an estimate of disease prevalence ψ, and the disease threshold
t, found as described above. Interestingly, and perhaps not instantly obvious,
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the disease threshold allows calculation of the average liability, E[L|D], of
affected individuals.

E[L|D] =
∫ ∞

t
xϕ(x)dx

=
ϕ(t)

ψ
.

Thus, the mean liability of affected individuals is determined by the prevalence
of disease. To this one adds data on affected pairs of individuals with a known
familial relationship, for instance, pairs of siblings both affected with the
disease, or a parent and offspring both affected, etc. The basic design is to
first identify individuals with the disease. Such an individual is often called the
“proband.” Identification of probands, being predicated on disease state, is
necessarily biased relative to overall disease prevalence, but is assumed to be
an unbiased collection of diseased individuals. Thus, probands are assumed
to have average liability, E[L|D], as given above. Once identified, relatives of
specific relatedness ρ to the proband are then identified as completely as
possible, and the affectation status of these relatives is ascertained. For
instance, the relatives might be a parent of the proband such that ρ = 0.5. The
faction of these relatives ζrelative who are also affected with disease is
estimated. This fraction, ζrelative, is an estimate of the penetrance of disease
given the individual is the specified degree of relatedness to the proband.
Thus, ζrelative = Pr[D|relative], and we can find the mean liability of these
relatives E[L|relative] with

E[L|relative] = t − Φ−1(1 − ζrelative).

In this manner we now have the mean phenotype of pairs of relatives with
known relatedness ρ. We can then estimate disease heritability h2 in the “usual”
manner,

h2 =
E[L|relative]

ρE[L|D]
.

4. Conclusions
Standard quantitative genetics quantities and results are derived from a first
principles approach. Measures of a factor’s (gene, allele, or environment) effect
size are defined as conditional expectation of phenotype given that factor.
Main effects and interaction effects are defined with very limited assumptions.
Linkage-disequilibrium’s contribution to effect size is derived, and methods
to account for it are discussed. Application of this framework to binary traits,
such as human disease, are extended with one additional assumption, that
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disease liability is well approximated by a normal distribution. Methods to
calculate quantitative genetics quantities are demonstrated using case-control
count data.
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